In this paper, first we prove Voronovskaja’s convergence theorem for complex q-Bernstein polynomials, 0 < q < 1, attached to analytic functions in compact disks in ℂ centered at origin, with quantitative estimate of this convergence. As an application, we obtain the exact order in approximation of analytic functions by the complex q-Bernstein polynomials on compact disks. Finally, we study the approximation properties of their iterates for any q > 0 and we prove that the complex qn-Bernstein polynomials with 0 < qn < 1 and qn → 1, preserve in the unit disk (beginning with an index) the starlikeness, convexity and spiral-likeness.