Let S = K[x1,…,xn] be a polynomial ring in n variables over a field K. Stanley’s conjecture holds for the modules I and S/I, when I ⊂ S is a critical monomial ideal. We calculate the Stanley depth of S/I when I is a canonical critical monomial ideal. For non-critical monomial ideals we show the existence of a Stanley ideal with the same depth and Hilbert function.
Bruns, W. and Herzog, J., Cohen-Macaulay rings, Revised Cambridge Studies in Advanced Mathematics, 39. Cambridge University Press (1993). MR 95h:13020
Cimpoeas, M., Stanley depth of monomial ideals in three variables, arXiv: math. AC/0807.2166v3 (2008).
Herzog, J., Vladoiu, M. and Zheng, X., How to compute the Stanley depth of a monomial ideal, J. Algebra, 322 (2009), no. 9, 3151–3169. MR 2567414
Zheng X. , 'How to compute the Stanley depth of a monomial ideal ' (2009 ) 322 J. Algebra : 3151 -3169.
Murai, S. and Hibi, T., The depth of an ideal with a given Hilbert function, Proc. Amedr. Math. Soc., 136 (2008), no. 5, 1533–1538. MR 2009b:13028
Hibi T. , 'The depth of an ideal with a given Hilbert function ' (2008 ) 136 Proc. Amedr. Math. Soc. : 1533 -1538.
Murai, S. and Hibi, T., Gotzmann ideals of the polynomial ring, Math. Z., 260 (2008), no. 3, 629–646. MR 2434473
Hibi T. , 'Gotzmann ideals of the polynomial ring ' (2008 ) 260 Math. Z. : 629 -646.
Popescu, D., Stanley depth of multigraded modules, J. Algebra, 321 (2009), no. 10, 2782–2797. MR 2512626
Popescu D. , 'Stanley depth of multigraded modules ' (2009 ) 321 J. Algebra : 2782 -2797.
Rauf, A., Depth and Stanley depth of multigraded modules, Commun. Algebra., 38 (2010), no. 2, 773–784. MR 2598911
Rauf A. , 'Depth and Stanley depth of multigraded modules ' (2010 ) 38 Commun. Algebra. : 773 -784.
Stanley, R. P., Linear Diophantine equations and local cohomology, Invent. Math., 68 (1982), no. 2, 175–193. MR 83m:10017
Stanley R. P. , 'Linear Diophantine equations and local cohomology ' (1982 ) 68 Invent. Math. : 175 -193.