View More View Less
  • 1 Šiauliai University Department of Mathematics, Faculty of Mathematics and Informatics Višinskio 19 LT-77156 Šiauliai Lithuania
  • | 2 Vilnius University Department of Probability Theory and Number Theory, Faculty of Mathematics and Informatics Naugarduko 24 LT-03225 Vilnius Lithuania
Restricted access

Purchase article

USD  $25.00

1 year subscription (Individual Only)

USD  $800.00

In this paper, the joint approximation of a given collection of analytic functions by a collection of shifts of zeta-functions with periodic coefficients is obtained. This is applied to prove the functional independence for these zeta-functions.

  • Bagchi, B., The statistical behaviour and universality properties of the Riemann zeta-function and other allied Dirichlet series, PhD Thesis, Calcutta, Indian Statistical Institute, 1981.

    Bagchi B. , '', in The statistical behaviour and universality properties of the Riemann zeta-function and other allied Dirichlet series , (1981 ) -.

  • Bagchi, B., Joint universality theorem for Dirichlet L-functions, Math. Z., 181 (1982), 319–334. MR 0678888 (84c:10083)

    Bagchi B. , 'Joint universality theorem for Dirichlet L-functions ' (1982 ) 181 Math. Z. : 319 -334.

    • Search Google Scholar
  • Billingsley, P., Convergence of Probability Measures, Wiley, New York, 1968.

    Billingsley P. , '', in Convergence of Probability Measures , (1968 ) -.

  • Conway, J. B., Functions of One Complex Variable. I, Springer-Verlag, New York, 1978. MR 0503901 80c:30003

    Conway J. B. , '', in Functions of One Complex Variable. I , (1978 ) -.

  • Cramér, H. and Leadbetter, M. R., Stationary and Related Stochastic Processes, Wiley, New York, 1967. MR 0217860 36#949

    Leadbetter M. R. , '', in Stationary and Related Stochastic Processes , (1967 ) -.

  • Garunkštis, R. and Laurinčikas, A., On one Hilbert’s problem for the Lerch zetafunction, Publ. Inst. Math., 65(79) (1999), 63–69. MR 1717402 2000i:11134

    Laurinčikas A. , 'On one Hilbert’s problem for the Lerch zetafunction ' (1999 ) 65 Publ. Inst. Math. : 63 -69.

    • Search Google Scholar
  • Gonek, S. M., Analytic properties of zeta and L-functions, PhD Thesis, University of Michigan, 1979.

  • Hayer, H., Probability Measures on Locally Compact Groups, Springer-Verlag, 1977.

  • Hölder, O., Über die Eigenschaft der Gamafunktion keiner algebraischen Differentialgleichung zu genügen, Math. Ann., 28 (1887), 1–13.

    Hölder O. , 'Über die Eigenschaft der Gamafunktion keiner algebraischen Differentialgleichung zu genügen ' (1887 ) 28 Math. Ann. : 1 -13.

    • Search Google Scholar
  • Javtokas, A. and Laurinficikas, A., On the periodic Hurwitz zeta-function, Hardy-Ramanujan J., 29 (2006), 18–36. MR 2278304 2007j:11113

    Laurinficikas A. , 'On the periodic Hurwitz zeta-function ' (2006 ) 29 Hardy-Ramanujan J. : 18 -36.

    • Search Google Scholar
  • Laurinčikas, A., Limit Theorems for the Riemann Zeta-Function, Kluwer Academic Publishers, Dordrecht, Boston, London, 1996. MR 1376140 96m:11070

    Laurinčikas A. , '', in Limit Theorems for the Riemann Zeta-Function , (1996 ) -.

  • Laurinčikas, A., The universality of zeta-funtions, Acta Appl. Math., 78 (2003), 251–271. MR 2024030 2005a:11136

    Laurinčikas A. , 'The universality of zeta-funtions ' (2003 ) 78 Acta Appl. Math. : 251 -271.

    • Search Google Scholar
  • Laurinčikas, A., Joint universality of general Dirichlet series, Izvestiya RAN, Ser. Matem., 69:1 (2005), 133–144 (in Russian) = Izvestiya: Mathematics, 69:1 (2005), 131–142. MR 2128183 2005k:11188

    Laurinčikas A. , 'Joint universality of general Dirichlet series ' (2005 ) 69 Izvestiya RAN, Ser. Matem. : 133 -144.

    • Search Google Scholar
  • Laurinčikas, A., An analogue of the Voronin’s theorem for periodic Hurwitz zetafunctions, Matem. Sb., 198, No. 2 (2007), 91–103 (in Russian). MR 2355443 2008j:11112

    Laurinčikas A. , 'An analogue of the Voronin’s theorem for periodic Hurwitz zetafunctions ' (2007 ) 198 Matem. Sb. : 91 -103.

    • Search Google Scholar
  • Laurinčikas, A., On joint universality of periodic Hurwitz zeta-functions, Lith. Math. J., 48, No. 1 (2008), 79–91. MR 2398173 2009e:11168

    Laurinčikas A. , 'On joint universality of periodic Hurwitz zeta-functions ' (2008 ) 48 Lith. Math. J. : 79 -91.

    • Search Google Scholar
  • Laurinčikas, A. and Garunkštis, R., The Lerch Zeta-Function, Kluwer Academic Publishers, Dordrecht, Boston, London, 2002. MR 1979048 2004c:11161

    Garunkštis R. , '', in The Lerch Zeta-Function , (2002 ) -.

  • Laurinčikas, A. and Matsumoto, K., The joint universality and the functional independence for Lerch zeta-functions, Nagoya Math. J., 157 (2000), 211–227. MR 1752482 2001d:11089

    Matsumoto K. , 'The joint universality and the functional independence for Lerch zeta-functions ' (2000 ) 157 Nagoya Math. J. : 211 -227.

    • Search Google Scholar
  • Laurinčikas, A. and Matsumoto, K., The joint universality of twisted automorphic L-functions, J. Math. Soc. Japan, 56(3) (2004), 923–939. MR 2071679 2005h:11100

    Matsumoto K. , 'The joint universality of twisted automorphic L-functions ' (2004 ) 56 J. Math. Soc. Japan : 923 -939.

    • Search Google Scholar
  • Laurinčikas, A. and Matsumoto, K., Joint value distribution theorems on Lerch zeta-functions. II, Liet. Matem. Rink., 48, No. 3 (2006), 332–350. MR 2285347 2007h:11104

    Matsumoto K. , 'Joint value distribution theorems on Lerch zeta-functions. II ' (2006 ) 48 Liet. Matem. Rink. : 332 -350.

    • Search Google Scholar
  • Laurinčikas, A. and Šiaučiūnas, D., Remarks on the universality of the periodic zeta-function, Math. Notes, 80(3–4) (2006), 711–722. MR 2314364 2007k:11143

    Šiaučiūnas D. , 'Remarks on the universality of the periodic zeta-function ' (2006 ) 80 Math. Notes : 711 -722.

    • Search Google Scholar
  • Loève, M., Probability Theory, Van Nostrand, Toronto, 1955. MR 0066573 16,598f

    Loève M. , '', in Probability Theory , (1955 ) -.

  • Matsumoto, K., Probabilistic value-distribution theory of zeta-functions, Sugaku Expositions, 17, No. 1 (2004), 51–71. MR 2073363

    Matsumoto K. , 'Probabilistic value-distribution theory of zeta-functions ' (2004 ) 17 Sugaku Expositions : 51 -71.

    • Search Google Scholar
  • Matsumoto, K., An introduction to the value-distribution theory of zeta-functions, Šiauliai Math. Semin., 1(9) (2006), 61–83. MR 2547356

    Matsumoto K. , 'An introduction to the value-distribution theory of zeta-functions ' (2006 ) 1 Šiauliai Math. Semin. : 61 -83.

    • Search Google Scholar
  • Ostrowski, A., Über Dirichletsche reihen und algebraische Differentialgleichungen, Math. Z., 8 (1920), 241–298. MR 1544442

    Ostrowski A. , 'Über Dirichletsche reihen und algebraische Differentialgleichungen ' (1920 ) 8 Math. Z. : 241 -298.

    • Search Google Scholar
  • Steuding, J., Value-Distribution of L-Functions, Lecture Notes Math. 1877, Springer-Verlag, Berlin, Heidelberg, 2007. MR 2330696 2008m:11172

    Steuding J. , '', in Value-Distribution of L-Functions , (2007 ) -.

  • Šleževičienė, R., The joint universality for twists of Dirichlet series with multiplicative coefficients, in: Analytic and Probab. Methods in Number Theory, Proc. of the 3rd Intern. Conf. on honour of J. Kubilius, Palanga, 2001, A. Dubickas et al (eds), TEV, Vilnius, 2002, pp. 303–319. MR 1964873 2003m:11150

    Šleževičienė R. , '', in Analytic and Probab. Methods in Number Theory , (2002 ) -.

  • Voronin, S. M., Theorem on the “universality” of the Riemann zeta-function, Izv. Akad. Nauk SSSR, Ser. Matem., 39 (1975), 475–486 (in Russian) = Math. USSR, Izv., 9 (1975), 443–453. MR 0472727 57#12419

    Voronin S. M. , 'Theorem on the “universality” of the Riemann zeta-function ' (1975 ) 39 Izv. Akad. Nauk SSSR, Ser. Matem. : 475 -486.

    • Search Google Scholar
  • Voronin, S. M., The functional independence of L-functions, Acta Arith., 20 (1975), 493–503 (in Russian). MR 0366836 51#12419

    Voronin S. M. , 'The functional independence of L-functions ' (1975 ) 20 Acta Arith. : 493 -503.

    • Search Google Scholar
  • Voronin, S. M., The differential independence of ζ-functions, Sov. Math. Dokl., 14 (1973), 607–609 = Dokl. Akad. Nauk SSSR, 209 No. 6 (1973), 1264–1266 (in Russian). MR 0319914 47#8455

    Voronin S. M. , 'The differential independence of ζ-functions ' (1973 ) 14 Sov. Math. Dokl. : 607 -609.

    • Search Google Scholar
  • Walsh, J. L., Interpolation and Approximation by Rational Functions in the Complex Domain, Amer. Math. Soc. Coll. Publ., Vol. 20, 1960. MR 0218587 36#1672a

Editors in Chief

Gábor SIMONYI (Rényi Institute of Mathematics)
András STIPSICZ (Rényi Institute of Mathematics)
Géza TÓTH (Rényi Institute of Mathematics) 

Managing Editor

Gábor SÁGI (Rényi Institute of Mathematics)

Editorial Board

  • Imre BÁRÁNY (Rényi Institute of Mathematics)
  • Károly BÖRÖCZKY (Rényi Institute of Mathematics and Central European University)
  • Péter CSIKVÁRI (ELTE, Budapest) 
  • Joshua GREENE (Boston College)
  • Penny HAXELL (University of Waterloo)
  • Andreas HOLMSEN (Korea Advanced Institute of Science and Technology)
  • Ron HOLZMAN (Technion, Haifa)
  • Satoru IWATA (University of Tokyo)
  • Tibor JORDÁN (ELTE, Budapest)
  • Roy MESHULAM (Technion, Haifa)
  • Frédéric MEUNIER (École des Ponts ParisTech)
  • Márton NASZÓDI (ELTE, Budapest)
  • Eran NEVO (Hebrew University of Jerusalem)
  • János PACH (Rényi Institute of Mathematics)
  • Péter Pál PACH (BME, Budapest)
  • Andrew SUK (University of California, San Diego)
  • Zoltán SZABÓ (Princeton University)
  • Martin TANCER (Charles University, Prague)
  • Gábor TARDOS (Rényi Institute of Mathematics)
  • Paul WOLLAN (University of Rome "La Sapienza")

STUDIA SCIENTIARUM MATHEMATICARUM HUNGARICA
Gábor Sági
Address: P.O. Box 127, H–1364 Budapest, Hungary
Phone: (36 1) 483 8344 ---- Fax: (36 1) 483 8333
E-mail: smh.studia@renyi.mta.hu

Indexing and Abstracting Services:

  • CompuMath Citation Index
  • Essential Science Indicators
  • Mathematical Reviews
  • Science Citation Index Expanded (SciSearch)
  • SCOPUS
  • Zentralblatt MATH

2019  
Total Cites
WoS
463
Impact Factor 0,468
Impact Factor
without
Journal Self Cites
0,468
5 Year
Impact Factor
0,413
Immediacy
Index
0,135
Citable
Items
37
Total
Articles
37
Total
Reviews
0
Cited
Half-Life
21,4
Citing
Half-Life
15,5
Eigenfactor
Score
0,00039
Article Influence
Score
0,196
% Articles
in
Citable Items
100,00
Normalized
Eigenfactor
0,04841
Average
IF
Percentile
13,117
Scimago
H-index
23
Scimago
Journal Rank
0,234
Scopus
Scite Score
76/104=0,7
Scopus
Scite Score Rank
General Mathematics 247/368 (Q3)
Scopus
SNIP
0,671
Acceptance
Rate
14%

 

Studia Scientiarum Mathematicarum Hungarica
Publication Model Hybrid
Submission Fee none
Article Processing Charge 900 EUR/article
Printed Color Illustrations 40 EUR (or 10 000 HUF) + VAT / piece
Regional discounts on country of the funding agency World Bank Lower-middle-income economies: 50%
World Bank Low-income economies: 100%
Further Discounts Editorial Board / Advisory Board members: 50%
Corresponding authors, affiliated to an EISZ member institution subscribing to the journal package of Akadémiai Kiadó: 100%
Subscription Information Online subsscription: 672 EUR / 840 USD
Print + online subscription: 760 EUR / 948 USD
Online subscribers are entitled access to all back issues published by Akadémiai Kiadó for each title for the duration of the subscription, as well as Online First content for the subscribed content.
Purchase per Title Individual articles are sold on the displayed price.

Studia Scientiarum Mathematicarum Hungarica
Language English
French
German
Size B5
Year of
Foundation
1966
Publication
Programme
2021 Volume 58
Volumes
per Year
1
Issues
per Year
4
Founder Magyar Tudományos Akadémia
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 0081-6906 (Print)
ISSN 1588-2896 (Online)