View More View Less
  • 1 Marquette University Department of Mathematics, Statistics and Computer Science Milwaukee WI 53201 USA
  • 2 University of Wisconsin-Milwaukee Department of Mathematical Sciences Milwaukee WI 53201 USA
  • 3 Islamic Azad University Department of Mathematics Shiraz Iran
Restricted access

Purchase article

USD  $25.00

1 year subscription (Individual Only)

USD  $800.00

First, we recall a concept which is called sub-independence. This concept is stronger than that of uncorrelatedness but a lot weaker than independence. The concept of sub-independence, unlike that of uncorrelatedness, does not depend on the existence of any moments. Then, we consider a particular bivariate mixture to construct a pair (X, Y), which is sub-independent but not independent.

  • Ahsanullah, M. and Hamedani, G. G., Some characterizations of normal distribution, CSAB, 37 (1988), no. 145–146, pp. 95–99. MR 0964309 (90f:62038)

    Hamedani G. G. , 'Some characterizations of normal distribution ' (1988 ) 37 CSAB : 95 -99.

  • Ahsanullah, M., Bansal, N. and Hamedani, G. G., On characterizations of normal distributions, CSAB, 41 (1991), no. 161–164, pp. 157–162. MR 1185162 (93h:62017)

    Hamedani G. G. , 'On characterizations of normal distributions ' (1991 ) 41 CSAB : 157 -162.

  • Bazargon, H., Bahai, H. and Aminzadeh-Gohari, A., Calculating the return value using a mathematical model of signićant wave height, J. Mar. Sci. Technology, 12 (2007), pp. 34–42.

    Aminzadeh-Gohari A. , 'Calculating the return value using a mathematical model of signićant wave height ' (2007 ) 12 J. Mar. Sci. Technology : 34 -42.

    • Search Google Scholar
  • Behboodian, J., Examples of uncorrelated dependent random variables using a bivariate mixture, The Amer. Statistician, 44 (1990), no. 3, p. 218. MR 1130912

    Behboodian J. , 'Examples of uncorrelated dependent random variables using a bivariate mixture ' (1990 ) 44 The Amer. Statistician : 218 -.

    • Search Google Scholar
  • Cramér, H., Random variables and probability distributions, 3rd ed. Cambridge University Press (1970), pp. 53–55. MR 0254895 (40#8102)

  • Durairajan, T. M., A classroom note on sub-independence, Gujrat Statistical Research, Vol. VI, no. 1, pp. 17–18. MR 0581278 (82a:60002)

  • Hamedani, G. G., Some remarks on a paper of Durairajan, Gujrat Statistical Research, Vol. X (1983), pp. 29–30.

    Hamedani G. G. , 'Some remarks on a paper of Durairajan ' (1983 ) X Gujrat Statistical Research : 29 -30.

    • Search Google Scholar
  • Hamedani, G. G., Nonnormality of linear combinations of normal random variables, The Amer. Statistician, 38 (1984), no. 4, pp. 295–296. MR 0770261 (86b:62081)

    Hamedani G. G. , 'Nonnormality of linear combinations of normal random variables ' (1984 ) 38 The Amer. Statistician : 295 -296.

    • Search Google Scholar
  • Hamedani, G. G., Bivariate and multivariate normal characterizations: A brief survey, Commun. Statist. Theory-Methods, 21 (1992), pp. 2665–2688. MR 1186073 (93h:62103)

    Hamedani G. G. , 'Bivariate and multivariate normal characterizations: A brief survey ' (1992 ) 21 Commun. Statist. Theory-Methods : 2665 -2688.

    • Search Google Scholar
  • Hamedani, G. G., On symmetric sum of sub-independent random variables, CSAB, 45 (1995), no. 177–178, pp. 119–124. MR 1370075 (97b:60023)

    Hamedani G. G. , 'On symmetric sum of sub-independent random variables ' (1995 ) 45 CSAB : 119 -124.

    • Search Google Scholar
  • Hamedani, G. G., Why independence when all you need is sub-independence, JSTA, 1 (2003), no. 4, pp. 280–283. MR 1999466

    Hamedani G. G. , 'Why independence when all you need is sub-independence ' (2003 ) 1 JSTA : 280 -283.

    • Search Google Scholar
  • Hamedani, G. G., Key, E. S. and Volkmer, H. W., Solution to a functional equation and its application to stable and stable-type distributions, SPL, 69 (2004), no. 1, pp. 1–9. MR 2087664 (2005f:39070)

    Volkmer H. W. , 'Solution to a functional equation and its application to stable and stable-type distributions ' (2004 ) 69 SPL : 1 -9.

    • Search Google Scholar
  • Hamedani, G. G. and Tata, M. N., On the determination of the bivariate normal from distributions of linear combinations of the variables, Amer. Math. Monthly, 82 (1975), no. 9, pp. 913–915. MR 0383643 (52#4523

    Tata M. N. , 'On the determination of the bivariate normal from distributions of linear combinations of the variables ' (1975 ) 82 Amer. Math. Monthly : 913 -915.

    • Search Google Scholar
  • Hamedani, G. G. and Volkmer, H. W., A class of symmetric random variables, Comm. Statist. Theory-Methods, 32 (2003), pp. 723–728. MR 1968823 (2004b:62030)

    Volkmer H. W. , 'A class of symmetric random variables ' (2003 ) 32 Comm. Statist. Theory-Methods : 723 -728.

    • Search Google Scholar
  • Hamedani, G. G. and Walter, G. G., A fixed point theorem and its application to the central limit theorem, Arch. Math., 43 (1984), no. 3, pp. 258–264. MR 0766433 (86a:60029)

    Walter G. G. , 'A fixed point theorem and its application to the central limit theorem ' (1984 ) 43 Arch. Math. : 258 -264.

    • Search Google Scholar
  • Hamedani, G. G. and Walter, G. G., On properties of sub-independent random variables, BIMS, 11 (1984), no. 1–2, pp. 45–51. MR 0787475 (86h:60032)

    Walter G. G. , 'On properties of sub-independent random variables ' (1984 ) 11 BIMS : 45 -51.

  • Hamedani, G. G. and Walter, G. G., On self-reciprocal random variables, Pub. Inst. Stat. Univ., XXXII (1987), no. 1–2, pp. 45–66. MR 08992344 (88i:60027)

    Walter G. G. , 'On self-reciprocal random variables ' (1987 ) XXXII Pub. Inst. Stat. Univ. : 45 -66.

    • Search Google Scholar
  • Johnson, N. L. and Kotz, S., On some generalized Farlie-Gumbel-Morgenstern distributions, Comm. Statist. Theory-Methods, 4 (1975), pp. 415–427. MR 0373155 (51#9357)

    Kotz S. , 'On some generalized Farlie-Gumbel-Morgenstern distributions ' (1975 ) 4 Comm. Statist. Theory-Methods : 415 -427.

    • Search Google Scholar
  • Lehmann, E. L., Some concepts of dependence, Annals of Math. Stat., 37 (1966), pp. 1137–1153. MR 0202228 (34#2101)

    Lehmann E. L. , 'Some concepts of dependence ' (1966 ) 37 Annals of Math. Stat. : 1137 -1153.

  • Schucany, W. R., Parr. W. C. and Boyer, J. E., Correlation structure in Farlie-Gumbel-Morgenstern distributions, Biometrika, 65 (1978), no. 3, pp. 650–653. MR 0521832 (80a:62081)

    Boyer J. E. , 'Correlation structure in Farlie-Gumbel-Morgenstern distributions ' (1978 ) 65 Biometrika : 650 -653.

    • Search Google Scholar