A pair of families (F, G) is said to be cross-Sperner if there exists no pair of sets F ∈ F, G ∈ G with F ⊆ G or G ⊆ F. There are two ways to measure the size of the pair (F, G): with the sum |F| + |G| or with the product |F| · |G|. We show that if F, G ⊆ 2[n], then |F| |G| ≦ 22n−4 and |F| + |G| is maximal if F or G consists of exactly one set of size ⌈n/2⌉ provided the size of the ground set n is large enough and both F and G are nonempty.
Ahlswede, R. and Daykin, D., An inequality for the weights of two families of sets, their unions and intersections, Probability Theory and Related Fields, 43 (1978), no. 3, 183–185. MR 0491189 (58#10454)
Daykin D. , 'An inequality for the weights of two families of sets, their unions and intersections ' (1978 ) 43 Probability Theory and Related Fields : 183 -185.
Bey, C., On cross-intersecting families of sets, Graphs and Combinatorics, 21 (2005), no. 2, 161–168. MR 2191013 (2006g:05212)
Bey C. , 'On cross-intersecting families of sets ' (2005 ) 21 Graphs and Combinatorics : 161 -168.
Bollobás, B., On generalized graphs, Acta Mathematica Academiae Scientarium Hungaricae, 16 (1965), 447–452. MR 0183653 (32#1133)
Bollobás B. , 'On generalized graphs ' (1965 ) 16 Acta Mathematica Academiae Scientarium Hungaricae : 447 -452.
Daykin, D. E., Frankl, P., Greene, C. and Hilton, A. J. W., A generalization of Sperner’s theorem, J. Austral. Math. Soc. (Series A), 31 (1981), no. 4, 481–485. MR 0638278 (83a:05003)
Hilton A. J. W. , 'A generalization of Sperner’s theorem ' (1981 ) 31 J. Austral. Math. Soc. (Series A) : 481 -485.
Deza, M. and Frankl, P., Erdős-Ko-Rado theorem — 22 years later, SIAM J. Algebraic Discrete Methods, 4 (1983), no. 4, 419–431. MR 0721612 (86a:05004)
Frankl P. , 'Erdős-Ko-Rado theorem — 22 years later ' (1983 ) 4 SIAM J. Algebraic Discrete Methods : 419 -431.
Engel, K., Sperner Theory, Encyclopedia of Mathematics and its Applications, 65. Cambridge University Press, Cambridge, 1997. x+417 pp. MR 1429390 (98m:05187)
Engel K. , '', in Sperner Theory , (1997 ) -.
Erdős, P., Ko, C. and Rado, R., Intersection theorems for systems of finite sets, Quart. J. Math. Oxford, 12 (1961), 313–318. MR 0141419 (25#3839)
Rado R. , 'Intersection theorems for systems of finite sets ' (1961 ) 12 Quart. J. Math. Oxford : 313 -318.
Erdős, P. L., Frankl, P. and Katona, G. O. H., Extremal hypergraphs problems and convex hulls, Combinatorica, 5 (1985), no. 1, 11–26. MR 0803235 (87a:05009)
Katona G. O. H. , 'Extremal hypergraphs problems and convex hulls ' (1985 ) 5 Combinatorica : 11 -26.
Frankl, P. and Tokushige, N., Some best possible inequalities concerning crossintersecting families, J. of Comb. Theory, Ser. A, 61 (1992), 87–97. MR 1178386 (93j:05158)
Tokushige N. , 'Some best possible inequalities concerning crossintersecting families ' (1992 ) 61 J. of Comb. Theory, Ser. A : 87 -97.
Frankl, P. and Tokushige, N., Some inequalities concerning cross-intersecting families, Combinatorics, Probability and Computing, 7 (1998), no. 3, 247–260. MR 1664319 (99i:05006)
Tokushige N. , 'Some inequalities concerning cross-intersecting families ' (1998 ) 7 Combinatorics, Probability and Computing : 247 -260.
Füredi, Z., Cross-intersecting families of finite sets, J. of Comb. Theory, Ser. A, 72 (1995), no. 2, 332–339. MR 1357781 (96k:05199)
Füredi Z. , 'Cross-intersecting families of finite sets ' (1995 ) 72 J. of Comb. Theory, Ser. A : 332 -339.
Kisvölcsey, Á., Exact bounds on cross-intersecting families, Graphs and Combinatorics, 17 (2001), no. 2, 275–287. MR 1844874 (2002e:05142)
Kisvölcsey , 'Exact bounds on cross-intersecting families ' (2011 ) 17 Graphs and Combinatorics : 275 -287.
Kisvölcsey, Á., Weighted cross-intersecting families, Discrete Mathematics, 308 (2008), no. 11, 2247–2260. MR 2404549 (2009i:05226)
Kisvölcsey , 'Weighted cross-intersecting families ' (2008 ) 308 Discrete Mathematics : 2247 -2260.
Keevash, P. and Sudakov, B., On a restricted cross-intersection problem, J. of Comb. Theory, Ser. A, 113 (2006), no. 7, 1536–1542. MR 2259076
Sudakov B. , 'On a restricted cross-intersection problem ' (2006 ) 113 J. of Comb. Theory, Ser. A : 1536 -1542.
Lovász, L., Combinatorial problems and exercises, second edition, North-Holland Publishing Co., Amsterdam, 1993, 635 pp. MR 1265492 (94m:05001)
Lovász L. , '', in Combinatorial problems and exercises , (1993 ) -.
Marica, J. and Schönheim, J., Differences of sets and a problem of Graham, Can. Math. Bull., 12 (1969), 635–637. MR 0249388 (40#2633)
Schönheim J. , 'Differences of sets and a problem of Graham ' (1969 ) 12 Can. Math. Bull. : 635 -637.
Sperner, E., Ein Satz über Untermenge einer endlichen Menge, Math Z., 27 (1928), no. 1, 544–548. MR 1544925
Sperner E. , 'Ein Satz über Untermenge einer endlichen Menge ' (1928 ) 27 Math Z. : 544 -548.