View More View Less
  • 1 Kobe University Department of Mathematics Rokko, Kobe 657-8501 Japan
  • 2 Kobe University Graduate School of Science Rokko, Kobe 657-8501 Japan
Restricted access

Purchase article

USD  $25.00

1 year subscription (Individual Only)

USD  $800.00

For the classical Erdős-Fortet sequence nk = 2k − 1 we show that the law of the iterated logarithm for star discrepancy of {nkx} has non-constant limsup, while the law for discrepancy has constant limsup.

  • Aistleitner, C., On the law of the iterated logarithm for the discrepancy of lacunary sequences, Trans. Amer. Math. Soc., 362 (2010), no. 11, 5967–5982. MR 2661504

    Aistleitner C. , 'On the law of the iterated logarithm for the discrepancy of lacunary sequences ' (2010 ) 362 Trans. Amer. Math. Soc. : 5967 -5982.

    • Search Google Scholar
  • Aistleitner, C., Irregular discrepancy behavior of lacunary series, Monatsh. Math., 160 (2010), no. 1, 1–29. MR 2610309 (2011i:11117)

    Aistleitner C. , 'Irregular discrepancy behavior of lacunary series ' (2010 ) 160 Monatsh. Math. : 1 -29.

    • Search Google Scholar
  • Aistleitner, C., Irregular discrepancy behavior of lacunary series II, Monatsh. Math., 160 (2010), no. 3, 255–270. MR 2726213

    Aistleitner C. , 'Irregular discrepancy behavior of lacunary series II ' (2010 ) 160 Monatsh. Math. : 255 -270.

    • Search Google Scholar
  • Berkes, I., On the asymptotic behaviour of Σf(n k x). I. Main Theorems, II. Applications, Z. Wahr. verv. Geb., 34 (1976) 319–345, 347–365. MR 0400341 (53 4175) MR 0400342 (53#4176)

    Berkes I. , 'On the asymptotic behaviour of Σf(nkx). I. Main Theorems, II. Applications ' (1976 ) 34 Z. Wahr. verv. Geb. : 319 -345.

    • Search Google Scholar
  • Fukuyama, K., The central limit theorem for Riesz-Raikov sums, Prob. Theory Related Fields, 100 (1994), no. 1, 57–75. MR 1292190 (95i:60020)

    Fukuyama K. , 'The central limit theorem for Riesz-Raikov sums ' (1994 ) 100 Prob. Theory Related Fields : 57 -75.

    • Search Google Scholar
  • Fukuyama, K., The law of the iterated logarithm for discrepancies of {θ n x}, Acta Math. Hungar., 118 (2008), no. 1–2, 155–170. MR 2378547 (2008m:60049)

    Fukuyama K. , 'The law of the iterated logarithm for discrepancies of {θnx} ' (2008 ) 118 Acta Math. Hungar. : 155 -170.

    • Search Google Scholar
  • Fukuyama, K., A law of the iterated logarithm for discrepancies: non-constant limsup, Monatsh. Math., 160 (2010), no. 2, 143–149. MR 2644217 (2011d:11184)

    Fukuyama K. , 'A law of the iterated logarithm for discrepancies: non-constant limsup ' (2010 ) 160 Monatsh. Math. : 143 -149.

    • Search Google Scholar
  • Fukuyama, K., A central limit theorem and a metric discrepancy result for sequence with bounded gaps, Dependence in Probability, Analysis and Number Theory, A volume in memory of Walter Philipp, Kendrick press, Heber City, UT, (2010), 233–246. MR 2731069

    Fukuyama K. , '', in A central limit theorem and a metric discrepancy result for sequence with bounded gaps , (2010 ) -.

  • Kac, M., On the distribution of values of sums of type Σf(2k t), Ann. Math., 47 (1946), 33–49. MR 0015548 (7, 436f)

    Kac M. , 'On the distribution of values of sums of type Σf(2kt) ' (1946 ) 47 Ann. Math. : 33 -49.

    • Search Google Scholar
  • Kac, M., Distribution properties of certain gap sequences (Abstract), Bull. Amer. Math. Soc., 53 (1947), pp. 746.

    Kac M. , 'Distribution properties of certain gap sequences (Abstract) ' (1947 ) 53 Bull. Amer. Math. Soc. : 746 -.

    • Search Google Scholar
  • Kac, M., Probability methods in some problems of analysis and number theory, Bull. Amer. Math. Soc., 55 (1949), 641–665. MR 0031504 (11, 161b)

    Kac M. , 'Probability methods in some problems of analysis and number theory ' (1949 ) 55 Bull. Amer. Math. Soc. : 641 -665.

    • Search Google Scholar
  • Petit, B., Le théorème limite central pour des sommes de Riesz-Raikov, Probab. Theory Relat. Fields, 93 (1992), no. 4, 407–438. MR 1183885 (94:11127)

    Petit B. , 'Le théorème limite central pour des sommes de Riesz-Raikov ' (1992 ) 93 Probab. Theory Relat. Fields : 407 -438.

    • Search Google Scholar
  • Philipp, W., Almost sure invariance principles for partial sums of weakly dependent random variables, Memoirs Amer. Math. Soc., 161 (1975), i.cs. 2, no. 161. MR 0433597 (55#6570)

  • Philipp, W., Limit theorems for lacunary series and uniform distribution mod 1, Acta Arith., 26 (1975), 241–251. MR 0379420 (52#325)

    Philipp W. , 'Limit theorems for lacunary series and uniform distribution mod 1 ' (1975 ) 26 Acta Arith. : 241 -251.

    • Search Google Scholar
  • Philipp, W., A functional law of the iterated logarithm for empirical distribution functions of weakly dependent random variables, Ann. Probab., 5 (1977), no. 3, 319–350. MR 0443024 (56#1397)

    Philipp W. , 'A functional law of the iterated logarithm for empirical distribution functions of weakly dependent random variables ' (1977 ) 5 Ann. Probab. : 319 -350.

    • Search Google Scholar
  • Salem, R. and Zygmund, A., On lacunary trigonometric series II, Proc. Nat. Acad. Sci. U.S.A., 34 (1948), 54–62. MR 0023936 (9, 425h)

    Zygmund A. , 'On lacunary trigonometric series II ' (1948 ) 34 Proc. Nat. Acad. Sci. U.S.A. : 54 -62.

    • Search Google Scholar
  • Strassen, V., Almost sure behavior of sums of independent random variables and martingales, Fifth Berkeley Symp. Math. Stat. Prob., Vol. II, Part I (1967), 315–343. MR 0214118 (35#4969)

  • Takahashi, S., An asymptotic property of a gap sequence, Proc. Japan Acad., 38, (1962), 101–104. MR 0140865 (25#4279)

    Takahashi S. , 'An asymptotic property of a gap sequence ' (1962 ) 38 Proc. Japan Acad. : 101 -104.

    • Search Google Scholar