View More View Less
  • 1 Tbilisi State University Institute of Mathematics, Faculty of Exact and Natural Sciences Chavchavadze str. 1 Tbilisi 0128 Georgia
Restricted access

Purchase article

USD  $25.00

1 year subscription (Individual Only)

USD  $800.00

The main aim of this paper is to prove that there exist a martingale fH1/2 such that Fejér means of Vilenkin-Fourier series of the martingale f is not uniformly bounded in the space L1/2.

  • Agaev, G. N., Vilenkin, N. Ya., Dzhafary, G. M. and Rubinshtejn, A. I., Multiplicative systems of functions and harmonic analysis on zero-dimensional groups, Baku, Ehim, 1981 (in Russian). “Elm” Baku, 1981. 180 pp. MR 0679132 (84b:43001)

    Rubinshtejn A. I. , '', in Multiplicative systems of functions and harmonic analysis on zero-dimensional groups , (1981 ) -.

  • Blahota, I., Gát, G. and Goginava, U., maximal operators of Fejér means of double Vilenkin-Fourier series, Colloq. Math., 107 (2007), no. 2, 287–296. MR 2284166 (2007k:42078)

    Goginava U. , 'maximal operators of Fejér means of double Vilenkin-Fourier series ' (2007 ) 107 Colloq. Math. : 287 -296.

    • Search Google Scholar
  • Blahota, I., Gát, G. and Goginava, U., Maximal operators of Fejér means of Vilenkin-Fourier series, JIPAM. J. Inequal. Pure Appl. Math., 7 (2006), no. 4, 1–7. MR 2268603 (2008h:42050)

    Goginava U. , 'Maximal operators of Fejér means of Vilenkin-Fourier series ' (2006 ) 7 JIPAM. J. Inequal. Pure Appl. Math. : 1 -7.

    • Search Google Scholar
  • Goginava, U., The maximal operator of the Fejér means of the character system of the p-series field in the Kaczmarz rearrangement, Publ. Math. Debrecen, 71 (2007), no. 1–2, 43–55. MR 2340033 (2008i:42057)

    Goginava U. , 'The maximal operator of the Fejér means of the character system of the p-series field in the Kaczmarz rearrangement ' (2007 ) 71 Publ. Math. Debrecen : 43 -55.

    • Search Google Scholar
  • Goginava, U., Maximal operators of Fejér means of double Walsh-Fourier series, Acta Math. Hungar., 115 (2007), no. 4, 333–340. MR 2327986 (2009:42061)

    Goginava U. , 'Maximal operators of Fejér means of double Walsh-Fourier series ' (2007 ) 115 Acta Math. Hungar. : 333 -340.

    • Search Google Scholar
  • Fujii, N. J., A maximal inequality for H 1 functions on a generalized Walsh-Paley group, Proc. Amer. Math. Soc., 77 (1979), 111–116. MR 81b:42070

    Fujii N. J. , 'A maximal inequality for H1 functions on a generalized Walsh-Paley group ' (1979 ) 77 Proc. Amer. Math. Soc. : 111 -116.

    • Search Google Scholar
  • Pal, J. and Simon, P., On a generalization of the comncept of derivate, Acta Math. Hung., 29 (1977), no. 1–2, 155–164. MR 0450884 (56#9176)

    Simon P. , 'On a generalization of the comncept of derivate ' (1977 ) 29 Acta Math. Hung. : 155 -164.

    • Search Google Scholar
  • Schipp, F., Certain rearrangements of series in the Walsh system, Mat. Zametki, 18 (1975), no. 2, 193–201. MR 0390633 (52#11458)

    Schipp F. , 'Certain rearrangements of series in the Walsh system ' (1975 ) 18 Mat. Zametki : 193 -201.

    • Search Google Scholar
  • Simon, P., Cesáro summability with two-parameter Walsh sistems, Monatsh. Math., 131 (2000), no. 4, 321–334. MR 1813992 (2001m:42052)

    Simon P. , 'Cesáro summability with two-parameter Walsh sistems ' (2000 ) 131 Monatsh. Math. : 321 -334.

    • Search Google Scholar
  • Simon, P., Investigations with respect to the Vilenkin sistem, Annales Univ. Sci. Budapest Eötv., Sect. Math., 27 (1985), 87–101. MR 0823096 (87b:42032)

    Simon P. , 'Investigations with respect to the Vilenkin sistem ' (1985 ) 27 Annales Univ. Sci. Budapest Eötv., Sect. Math. : 87 -101.

    • Search Google Scholar
  • Vilenkin, N. Ya., A class of complate ortonormal systems, Izv. Akad. Nauk. U.S.S.R., Ser. Mat., 11 (1947), 363–400. MR 0022560 (9, 224h)

    Vilenkin N. Ya. , 'A class of complate ortonormal systems ' (1947 ) 11 Izv. Akad. Nauk. U.S.S.R., Ser. Mat. : 363 -400.

    • Search Google Scholar
  • Weisz, F., Martingale Hardy spaces and their applications in Fourier Analysis, Springer, Berlin-Heideiberg-New York, 1994. MR 1320508 (96m:60108)

    Weisz F. , '', in Martingale Hardy spaces and their applications in Fourier Analysis , (1994 ) -.

  • Weisz, F., Cesáro summability of one and two-dimensional Fourier series, Anal. Math. Studies, 5 (1996), 353–367.

    Weisz F. , 'Cesáro summability of one and two-dimensional Fourier series ' (1996 ) 5 Anal. Math. Studies : 353 -367.

    • Search Google Scholar
  • Weisz, F., Hardy spaces and Cesáro means of two-dimensional Fourier series, Approximation theory and function series (Budapest, 1995), Bolyai Soc. Math. Studies (1996), 353–367. MR 1432680 (98f:42026)

  • Zygmund, A., Trigonometric Series, Vol. 1, Cambridge Univ. Press, 1959. MR 017776 (21#4698)