In this paper we study the exponential uniform strong approximation of two-dimensional Walsh-Fourier series. In particular, it is proved that the two-dimensional Walsh-Fourier series of the continuous function f is uniformly strong summable to the function f exponentially in the power 1/2. Moreover, it is proved that this result is best possible.
Alexits, G. and Králik, D., Über den Annäherungsgrad der Approximation im starken Sinne von stetigen Funktionen (German. Russian summary), Magyar Tud. Akad. Mat. Kutató Int. Közl., 8 (1964), 317–327 (1964). MR 0185339 (32#2807)
Králik D. , 'Über den Annäherungsgrad der Approximation im starken Sinne von stetigen Funktionen (German. Russian summary) ' (1964 ) 8 Magyar Tud. Akad. Mat. Kutató Int. Közl. : 317 -327.
Fejér, Leopold, Untersuchungen über Fouriersche Reihen (German), Math. Ann., 58 (1903), no. 1–2, 51–69. MR 1511228
Fejér L. , 'Untersuchungen über Fouriersche Reihen (German) ' (1903 ) 58 Math. Ann. : 51 -69.
Fridli, S. and Schipp, F., Strong summability and Sidon type inequalities (English summary), Acta Sci. Math. (Szeged), 60 (1995), no. 1–2, 277–289. MR 1348694 (98f:42002)
Schipp F. , 'Strong summability and Sidon type inequalities (English summary) ' (1995 ) 60 Acta Sci. Math. (Szeged) : 277 -289.
Fridli, S. and Schipp, F., Strong approximation via Sidon type inequalities (English summary), J. Approx. Theory, 94 (1998), no. 2, 263–284. MR 1637418 (99e:41011)
Schipp F. , 'Strong approximation via Sidon type inequalities (English summary) ' (1998 ) 94 J. Approx. Theory : 263 -284.
Gogoladze, L., On the exponential uniform strong summability of multiple trigonometric Fourier series, Georgian Math. J., 16 (2009), 517–532. MR 2572672 (2010k:42016)
Gogoladze L. , 'On the exponential uniform strong summability of multiple trigonometric Fourier series ' (2009 ) 16 Georgian Math. J. : 517 -532.
Goginava, U. and Gogoladze, L., Strong Approximation By Marcinkiewicz Means of two-dimensionalWalsh-Fourier Series, Constructive Approximation, 35,1 (2012), 1–19.
Gogoladze L. , 'Strong Approximation By Marcinkiewicz Means of two-dimensionalWalsh-Fourier Series ' (2012 ) 351 Constructive Approximation : 1 -19.
Hardy, G. H. and Littlewood, J. E., Sur la serie de Fourier d’une fonction a carre sommable, C.R. Acad. Sci. Paris, 156 (1913), 1307–1309.
Littlewood J. E. , 'Sur la serie de Fourier d’une fonction a carre sommable ' (1913 ) 156 C.R. Acad. Sci. Paris : 1307 -1309.
Hardy, G. H., Littlewood, J. E. and Polya, G., Inequalities, 2nd ed., Cambridge University Press (Cambridge, 1952). MR 0046395 (13,727e)
Polya G. , '', in Inequalities , (1952 ) -.
Leindler, L., Über die Approximation im starken Sinne, Acta Math. Acad. Hungar., 16 (1965), 255–262. MR 0174921 (30#5112)
Leindler L. , 'Über die Approximation im starken Sinne ' (1965 ) 16 Acta Math. Acad. Hungar. : 255 -262.
Leindler, L., On the strong approximation of Fourier series, Acta Sci. Math. (Szeged), 38 (1976), 317–324. MR 0433116 (55#6095)
Leindler L. , 'On the strong approximation of Fourier series ' (1976 ) 38 Acta Sci. Math. (Szeged) : 317 -324.
Leindler, L., Strong approximation and classes of functions, Mitteilungen Math. Seminar Giessen, 132 (1978), 29–38. MR 0493404 (80d:42002)
Leindler L. , 'Strong approximation and classes of functions ' (1978 ) 132 Mitteilungen Math. Seminar Giessen : 29 -38.
Leindler, L., Strong approximation by Fourier series, Akadémiai Kiadó (Budapest, 1985). MR 0829707 (87g:42006)
Leindler L. , '', in Strong approximation by Fourier series , (1985 ) -.
Rodin, V. A., BMO-strong means of Fourier series, Funct. anal. Appl., 23 (1989), 73–74, (Russian) translation in Funct. Anal. Appl., 23 (1989), no. 2, 145–147. MR 1011366 (90h:42033)
Rodin V. A. , 'BMO-strong means of Fourier series ' (1989 ) 23 Funct. anal. Appl. : 73 -74.
Schipp, F., Über die starke Summation von Walsh-Fourier Reihen, Acta Sci. Math. (Szeged), 30 (1969), 77–87. MR 0241890 (39#3227)
Schipp F. , 'Über die starke Summation von Walsh-Fourier Reihen ' (1969 ) 30 Acta Sci. Math. (Szeged) : 77 -87.
Schipp, F., On strong approximation of Walsh-Fourier series, MTA III. Oszt. Közl., 19 (1969), 101–111 (Hungarian).
Schipp F. , 'On strong approximation of Walsh-Fourier series ' (1969 ) 19 MTA III. Oszt. Közl. : 101 -111.
Schipp, F. and Ky, N. X., On strong summability of polynomial expansions, Anal. Math., 12 (1986), 115–128. MR 0854534 (87i:40009)
Ky N. X. , 'On strong summability of polynomial expansions ' (1986 ) 12 Anal. Math. : 115 -128.
Schipp, F., Wade, W. R., Simon, P. and Pál, J., Walsh Series, an Introduction to Dyadic Harmonic Analysis, Adam Hilger (Bristol, New York, 1990).
Stećkin, S. B., The approximation of periodic functions by Fejér sums (Russian), Trudy Mat. Inst. Steklov., 62 (1961), 48–60; English transl.: Amer. Mat. Soc. Transl. (2), 28 (1963), 269–282. MR 0162085 (28#5287a)
Stećkin S. B. , 'The approximation of periodic functions by Fejér sums (Russian) ' (1961 ) 62 Trudy Mat. Inst. Steklov. : 48 -60.
Totik, V., On the strong approximation of Fourier series, Acta Math. Sci. Hungar., 35 (1980), no. 1–2, 151–172. MR 0588890 (82c:42004)
Totik V. , 'On the strong approximation of Fourier series ' (1980 ) 35 Acta Math. Sci. Hungar. : 151 -172.
Totik, V., On the generalization of Fejér’s summation theorem, in: Functions, Series, Operators; Coll. Math. Soc. J. Bolyai (Budapest) Hungary, 35, North Holland (Amsterdam-Oxford-New-Yourk, 1980), 1195–1199. MR 0751078 (85h:42008)
Totik V. , '', in Functions, Series, Operators , (1980 ) -.
Totik, V., Notes on Fourier series: Strong approximation, J. Approx. Theory, 43 (1985), no. 2, 105–111. MR 0775778 (86g:42009)
Totik V. , 'Notes on Fourier series: Strong approximation ' (1985 ) 43 J. Approx. Theory : 105 -111.
Weisz, F., Strong summability of Ciesielski-Fourier series, Studia Math., 161 (2004), no. 3, 269–302. MR 2033018 (2004k:42008)
Weisz F. , 'Strong summability of Ciesielski-Fourier series ' (2004 ) 161 Studia Math. : 269 -302.
Weisz, F., Strong summability of more-dimensional Ciesielski-Fourier series, East J. Approx., 10 (2004), no. 3, 333–354. MR 2076892 (2005f:42072)
Weisz F. , 'Strong summability of more-dimensional Ciesielski-Fourier series ' (2004 ) 10 East J. Approx. : 333 -354.