Authors:
Ushangi Goginava Tbilisi State University Institute of Mathematics, Faculty of Exact and Natural Sciences Chavchavadze str. 1 Tbilisi 0128 Georgia

Search for other papers by Ushangi Goginava in
Current site
Google Scholar
PubMed
Close
and
Ferenc Weisz Eötvös L. University Department of Numerical Analysis H-1117 Budapest Pázmány P. sétány 1/C. Hungary

Search for other papers by Ferenc Weisz in
Current site
Google Scholar
PubMed
Close
Restricted access

In this paper we characterize the set of convergence of the Marcinkiewicz-Fejér means of two-dimensional Walsh-Fourier series.

  • Blahota, I. and Goginava, U., The maximal operator of the Marcinkiewicz-Fejér means of the 2-dimensional Vilenkin-Fourier series, Studia Sci. Math. Hungar., 45 (2008), 321–331. MR 2657359 (2011d:42035)

    Goginava U. , 'The maximal operator of the Marcinkiewicz-Fejér means of the 2-dimensional Vilenkin-Fourier series ' (2008 ) 45 Studia Sci. Math. Hungar. : 321 -331 .

    • Search Google Scholar
  • Butzer, P. L. and Nessel, R. J., Fourier Analysis and Approximation, Birkhäuser (Basel, 1971). MR 0510857 (58#23312)

    Nessel R. J. , '', in Fourier Analysis and Approximation , (1971 ) -.

  • Fine, J., Cesáro summability of Walsh-Fourier series, Proc. Nat. Acad. Sci. USA, 41 (1955), 558–591. MR 0070757 (17, 31f)

    Fine J. , 'Cesáro summability of Walsh-Fourier series ' (1955 ) 41 Proc. Nat. Acad. Sci. USA : 558 -591 .

    • Search Google Scholar
  • Goginava, U., The maximal operator of the Marcinkiewicz-Fejér means of the d-dimensional Walsh-Fourier series, East J. Approx., 3,12 (2006), 295–302. MR 2252557 (2007d:42047)

    Goginava U. , 'The maximal operator of the Marcinkiewicz-Fejér means of the d-dimensional Walsh-Fourier series ' (2006 ) 3 East J. Approx. : 295 -302 .

    • Search Google Scholar
  • Goginava, U., The weak type inequality for the maximal operator of the Marcinkiewicz-Fejér means of the two-dimensional Walsh-Fourier series, J. Approximation Theory, 154,2 (2008), 161–180. MR 2474770 (2009m:42049)

    Goginava U. , 'The weak type inequality for the maximal operator of the Marcinkiewicz-Fejér means of the two-dimensional Walsh-Fourier series ' (2008 ) 154 J. Approximation Theory : 161 -180 .

    • Search Google Scholar
  • Lebesgue, H., Recherches sur la convergence des séries de Fourier, Math. Annalen, 61 (1905), no. 2, 251–280. MR 1511346

    Lebesgue H. , 'Recherches sur la convergence des séries de Fourier ' (1905 ) 61 Math. Annalen : 251 -280 .

    • Search Google Scholar
  • Marcinkiewicz, J., Sur une méthode remarquable de sommation des séries doubles de Fourier, Ann. Scuola Norm. Sup. Pisa, 8 (1939), no. 2, 149–160. MR 1556822

    Marcinkiewicz J. , 'Sur une méthode remarquable de sommation des séries doubles de Fourier ' (1939 ) 8 Ann. Scuola Norm. Sup. Pisa : 149 -160 .

    • Search Google Scholar
  • Marcinkiewicz, J. and Zygmund, Z., On the summability of double Fourier series, Fund. Math., 32 (1939), 122–132.

    Zygmund Z. , 'On the summability of double Fourier series ' (1939 ) 32 Fund. Math. : 122 -132 .

    • Search Google Scholar
  • Feichtinger, H. G. and Weisz, F., Wiener amalgams and pointwise summability of Fourier transforms and Fourier series, Math. Proc. Comb. Phil. Soc., 140 (2006), 509–536. MR 2225645 (2007a:42010)

    Weisz F. , 'Wiener amalgams and pointwise summability of Fourier transforms and Fourier series ' (2006 ) 140 Math. Proc. Comb. Phil. Soc. : 509 -536 .

    • Search Google Scholar
  • Schipp, F., Über gewissen maximaloperatoren, Ann. Univ. Sci. Budapest Sect. Math., 18 (1975), 189–195.

    Schipp F. , 'Über gewissen maximaloperatoren ' (1975 ) 18 Ann. Univ. Sci. Budapest Sect. Math. : 189 -195 .

    • Search Google Scholar
  • Weisz, F., Convergence of singular integrals, Ann. Univ. Sci. Budapest Sect. Math., 32 (1989), 243–256. MR 1094669 (92a:42038)

    Weisz F. , 'Convergence of singular integrals ' (1989 ) 32 Ann. Univ. Sci. Budapest Sect. Math. : 243 -256 .

    • Search Google Scholar
  • Weisz, F., Convergence of double Walsh-Fourier series and Hardy spaces, Approx. Theory & its. Appl., 17,2 (2001), 32–44. MR 1867788 (2002m:42032)

    Weisz F. , 'Convergence of double Walsh-Fourier series and Hardy spaces ' (2001 ) 17 Approx. Theory & its. Appl. : 32 -44 .

    • Search Google Scholar
  • Weisz, F., Summability of multi-dimensional Fourier series and Hardy space, Kluwer Academic (Dordrecht, 2002). MR 2009144 (2004h:42001)

    Weisz F. , '', in Summability of multi-dimensional Fourier series and Hardy space , (2002 ) -.

  • Weisz, F., Walsh-Lebesgue points of multi-dimensional functions, Anal. Math., 34 (2008), 307–324. MR 2457061 (2010d:42046)

    Weisz F. , 'Walsh-Lebesgue points of multi-dimensional functions ' (2008 ) 34 Anal. Math. : 307 -324 .

    • Search Google Scholar
  • Zhizhiashvili, L., A generalization of a theorem of Marcinkiewicz, Math. USSR, Izvestija, 2 (1968), 1065–1075. (in Russian).

    Zhizhiashvili L. , 'A generalization of a theorem of Marcinkiewicz ' (1968 ) 2 Math. USSR, Izvestija : 1065 -1075 .

    • Search Google Scholar
  • Zhizhiashvili, L., Trigonometric Fourier Series and their Conjugates, Kluwer Academic Publishers (Dordrecht, 1996). MR 1408905 (97k:42001)

    Zhizhiashvili L. , '', in Trigonometric Fourier Series and their Conjugates , (1996 ) -.

  • Zygmund, A.Trigonometric Series, Cambridge Press, London, 3rd edition (2002). MR 1963498 (2004h:01041)

    Zygmund A. , '', in Trigonometric Series , (2002 ) -.

  • Collapse
  • Expand

Editors in Chief

Gábor SIMONYI (Rényi Institute of Mathematics)
András STIPSICZ (Rényi Institute of Mathematics)
Géza TÓTH (Rényi Institute of Mathematics) 

Managing Editor

Gábor SÁGI (Rényi Institute of Mathematics)

Editorial Board

  • Imre BÁRÁNY (Rényi Institute of Mathematics)
  • Károly BÖRÖCZKY (Rényi Institute of Mathematics and Central European University)
  • Péter CSIKVÁRI (ELTE, Budapest) 
  • Joshua GREENE (Boston College)
  • Penny HAXELL (University of Waterloo)
  • Andreas HOLMSEN (Korea Advanced Institute of Science and Technology)
  • Ron HOLZMAN (Technion, Haifa)
  • Satoru IWATA (University of Tokyo)
  • Tibor JORDÁN (ELTE, Budapest)
  • Roy MESHULAM (Technion, Haifa)
  • Frédéric MEUNIER (École des Ponts ParisTech)
  • Márton NASZÓDI (ELTE, Budapest)
  • Eran NEVO (Hebrew University of Jerusalem)
  • János PACH (Rényi Institute of Mathematics)
  • Péter Pál PACH (BME, Budapest)
  • Andrew SUK (University of California, San Diego)
  • Zoltán SZABÓ (Princeton University)
  • Martin TANCER (Charles University, Prague)
  • Gábor TARDOS (Rényi Institute of Mathematics)
  • Paul WOLLAN (University of Rome "La Sapienza")

STUDIA SCIENTIARUM MATHEMATICARUM HUNGARICA
Gábor Sági
Address: P.O. Box 127, H–1364 Budapest, Hungary
Phone: (36 1) 483 8344 ---- Fax: (36 1) 483 8333
E-mail: smh.studia@renyi.mta.hu

Indexing and Abstracting Services:

  • CABELLS Journalytics
  • CompuMath Citation Index
  • Essential Science Indicators
  • Mathematical Reviews
  • Science Citation Index Expanded (SciSearch)
  • SCOPUS
  • Zentralblatt MATH

2024  
Scopus  
CiteScore  
CiteScore rank  
SNIP  
Scimago  
SJR index 0.305
SJR Q rank Q3

2023  
Web of Science  
Journal Impact Factor 0.4
Rank by Impact Factor Q4 (Mathematics)
Journal Citation Indicator 0.49
Scopus  
CiteScore 1.3
CiteScore rank Q2 (General Mathematics)
SNIP 0.705
Scimago  
SJR index 0.239
SJR Q rank Q3

Studia Scientiarum Mathematicarum Hungarica
Publication Model Hybrid
Submission Fee none
Article Processing Charge 900 EUR/article (only for OA publications)
Printed Color Illustrations 40 EUR (or 10 000 HUF) + VAT / piece
Regional discounts on country of the funding agency World Bank Lower-middle-income economies: 50%
World Bank Low-income economies: 100%
Further Discounts Editorial Board / Advisory Board members: 50%
Corresponding authors, affiliated to an EISZ member institution subscribing to the journal package of Akadémiai Kiadó: 100%
Subscription fee 2025 Online subsscription: 796 EUR / 876 USD
Print + online subscription: 900 EUR / 988 USD
Subscription Information Online subscribers are entitled access to all back issues published by Akadémiai Kiadó for each title for the duration of the subscription, as well as Online First content for the subscribed content.
Purchase per Title Individual articles are sold on the displayed price.

Studia Scientiarum Mathematicarum Hungarica
Language English
French
German
Size B5
Year of
Foundation
1966
Volumes
per Year
1
Issues
per Year
4
Founder Magyar Tudományos Akadémia  
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 0081-6906 (Print)
ISSN 1588-2896 (Online)