View More View Less
  • 1 Tbilisi State University Institute of Mathematics, Faculty of Exact and Natural Sciences Chavchavadze str. 1 Tbilisi 0128 Georgia
  • 2 Eötvös L. University Department of Numerical Analysis H-1117 Budapest Pázmány P. sétány 1/C. Hungary
Restricted access

Purchase article

USD  $25.00

1 year subscription (Individual Only)

USD  $800.00

In this paper we characterize the set of convergence of the Marcinkiewicz-Fejér means of two-dimensional Walsh-Fourier series.

  • Blahota, I. and Goginava, U., The maximal operator of the Marcinkiewicz-Fejér means of the 2-dimensional Vilenkin-Fourier series, Studia Sci. Math. Hungar., 45 (2008), 321–331. MR 2657359 (2011d:42035)

    Goginava U. , 'The maximal operator of the Marcinkiewicz-Fejér means of the 2-dimensional Vilenkin-Fourier series ' (2008 ) 45 Studia Sci. Math. Hungar. : 321 -331.

    • Search Google Scholar
  • Butzer, P. L. and Nessel, R. J., Fourier Analysis and Approximation, Birkhäuser (Basel, 1971). MR 0510857 (58#23312)

    Nessel R. J. , '', in Fourier Analysis and Approximation , (1971 ) -.

  • Fine, J., Cesáro summability of Walsh-Fourier series, Proc. Nat. Acad. Sci. USA, 41 (1955), 558–591. MR 0070757 (17, 31f)

    Fine J. , 'Cesáro summability of Walsh-Fourier series ' (1955 ) 41 Proc. Nat. Acad. Sci. USA : 558 -591.

    • Search Google Scholar
  • Goginava, U., The maximal operator of the Marcinkiewicz-Fejér means of the d-dimensional Walsh-Fourier series, East J. Approx., 3,12 (2006), 295–302. MR 2252557 (2007d:42047)

    Goginava U. , 'The maximal operator of the Marcinkiewicz-Fejér means of the d-dimensional Walsh-Fourier series ' (2006 ) 3 East J. Approx. : 295 -302.

    • Search Google Scholar
  • Goginava, U., The weak type inequality for the maximal operator of the Marcinkiewicz-Fejér means of the two-dimensional Walsh-Fourier series, J. Approximation Theory, 154,2 (2008), 161–180. MR 2474770 (2009m:42049)

    Goginava U. , 'The weak type inequality for the maximal operator of the Marcinkiewicz-Fejér means of the two-dimensional Walsh-Fourier series ' (2008 ) 154 J. Approximation Theory : 161 -180.

    • Search Google Scholar
  • Lebesgue, H., Recherches sur la convergence des séries de Fourier, Math. Annalen, 61 (1905), no. 2, 251–280. MR 1511346

    Lebesgue H. , 'Recherches sur la convergence des séries de Fourier ' (1905 ) 61 Math. Annalen : 251 -280.

    • Search Google Scholar
  • Marcinkiewicz, J., Sur une méthode remarquable de sommation des séries doubles de Fourier, Ann. Scuola Norm. Sup. Pisa, 8 (1939), no. 2, 149–160. MR 1556822

    Marcinkiewicz J. , 'Sur une méthode remarquable de sommation des séries doubles de Fourier ' (1939 ) 8 Ann. Scuola Norm. Sup. Pisa : 149 -160.

    • Search Google Scholar
  • Marcinkiewicz, J. and Zygmund, Z., On the summability of double Fourier series, Fund. Math., 32 (1939), 122–132.

    Zygmund Z. , 'On the summability of double Fourier series ' (1939 ) 32 Fund. Math. : 122 -132.

    • Search Google Scholar
  • Feichtinger, H. G. and Weisz, F., Wiener amalgams and pointwise summability of Fourier transforms and Fourier series, Math. Proc. Comb. Phil. Soc., 140 (2006), 509–536. MR 2225645 (2007a:42010)

    Weisz F. , 'Wiener amalgams and pointwise summability of Fourier transforms and Fourier series ' (2006 ) 140 Math. Proc. Comb. Phil. Soc. : 509 -536.

    • Search Google Scholar
  • Schipp, F., Über gewissen maximaloperatoren, Ann. Univ. Sci. Budapest Sect. Math., 18 (1975), 189–195.

    Schipp F. , 'Über gewissen maximaloperatoren ' (1975 ) 18 Ann. Univ. Sci. Budapest Sect. Math. : 189 -195.

    • Search Google Scholar
  • Weisz, F., Convergence of singular integrals, Ann. Univ. Sci. Budapest Sect. Math., 32 (1989), 243–256. MR 1094669 (92a:42038)

    Weisz F. , 'Convergence of singular integrals ' (1989 ) 32 Ann. Univ. Sci. Budapest Sect. Math. : 243 -256.

    • Search Google Scholar
  • Weisz, F., Convergence of double Walsh-Fourier series and Hardy spaces, Approx. Theory & its. Appl., 17,2 (2001), 32–44. MR 1867788 (2002m:42032)

    Weisz F. , 'Convergence of double Walsh-Fourier series and Hardy spaces ' (2001 ) 17 Approx. Theory & its. Appl. : 32 -44.

    • Search Google Scholar
  • Weisz, F., Summability of multi-dimensional Fourier series and Hardy space, Kluwer Academic (Dordrecht, 2002). MR 2009144 (2004h:42001)

    Weisz F. , '', in Summability of multi-dimensional Fourier series and Hardy space , (2002 ) -.

  • Weisz, F., Walsh-Lebesgue points of multi-dimensional functions, Anal. Math., 34 (2008), 307–324. MR 2457061 (2010d:42046)

    Weisz F. , 'Walsh-Lebesgue points of multi-dimensional functions ' (2008 ) 34 Anal. Math. : 307 -324.

    • Search Google Scholar
  • Zhizhiashvili, L., A generalization of a theorem of Marcinkiewicz, Math. USSR, Izvestija, 2 (1968), 1065–1075. (in Russian).

    Zhizhiashvili L. , 'A generalization of a theorem of Marcinkiewicz ' (1968 ) 2 Math. USSR, Izvestija : 1065 -1075.

    • Search Google Scholar
  • Zhizhiashvili, L., Trigonometric Fourier Series and their Conjugates, Kluwer Academic Publishers (Dordrecht, 1996). MR 1408905 (97k:42001)

    Zhizhiashvili L. , '', in Trigonometric Fourier Series and their Conjugates , (1996 ) -.

  • Zygmund, A. Trigonometric Series, Cambridge Press, London, 3rd edition (2002). MR 1963498 (2004h:01041)

    Zygmund A. , '', in Trigonometric Series , (2002 ) -.