View More View Less
  • 1 University of Science and Technology of China Department of Mathematics Hefei 230026 P. R. China
  • | 2 Francisk Skorina Gomel State University Department of Mathematics Gomel 246019 Belarus
Restricted access

Purchase article

USD  $25.00

1 year subscription (Individual Only)

USD  $800.00

Let G be a finite group and H a subgroup of G. H is said to be S-quasinormal in G if HP = PH for all Sylow subgroups P of G. Let HsG be the subgroup of H generated by all those subgroups of H which are S-quasinormal in G and HsG the intersection of all S-quasinormal subgroups of G containing H. The symbol |G|p denotes the order of a Sylow p-subgroup of G. We prove the followingTheorem A. Let G be a finite group and p a prime dividing |G|. Then G is p-supersoluble if and only if for every cyclic subgroup H of (G) of prime order or order 4 (if p = 2), has a normal subgroup T such thatHsḠandHT=HsḠT.Theorem B. A soluble finite group G is p-supersoluble if and only if for every 2-maximal subgroup E of G such that Op′ (G) ≦ E and |G: E| is not a power of p, G has an S-quasinormal subgroup T with cyclic Sylow p-subgroups such that EsG = ET and |ET|p = |EsGT|p.Theorem C. A finite group G is p-soluble if for every 2-maximal subgroup E of G such that Op (G) ≦ E and |G: E| is not a power of p, G has an S-quasinormal subgroup T such that EsG = ET and |ETp = |EsGT|p.

  • Agrawal, R. K., Generalized center and hypercenter of a finite group, Proc. Amer. Math. Soc., 54 (1976), 13–21.

    Agrawal R. K. , 'Generalized center and hypercenter of a finite group ' (1976 ) 54 Proc. Amer. Math. Soc. : 13 -21.

    • Search Google Scholar
  • Ballester-Bolinches, A. and Ezquerro, L. M., Classes of Finite groups, Springer, Dordrecht, 2006.

    Ezquerro L. M. , '', in Classes of Finite groups , (2006 ) -.

  • Bercovich, Yakov and Kazarin, Lev, Indices of elements and normal structure of finite groups, J. Algebra., 283(1) (2005), 564–583.

    Kazarin L. , 'Indices of elements and normal structure of finite groups ' (2005 ) 283 J. Algebra. : 564 -583.

    • Search Google Scholar
  • Buckley, J., Finite groups whose minimal subgroups are normal, Math. Z., 15 (1970), 15–17.

    Buckley J. , 'Finite groups whose minimal subgroups are normal ' (1970 ) 15 Math. Z. : 15 -17.

    • Search Google Scholar
  • Deskins, W. E., On quasinormal subgroups of finite groups, Math. Z., (1963) 82, 125–132.

    Deskins W. E. , 'On quasinormal subgroups of finite groups ' (1963 ) 82 Math. Z. : 125 -132.

  • Doerk, K. and Hawkes, T., Finite Soluble Groups, Walter de Gruyter, Berlin-New York, 1992.

    Hawkes T. , '', in Finite Soluble Groups , (1992 ) -.

  • Gorenstein, D., Finite Groups, Harper & Row Publishers, New York-Evanston-London, 1968.

    Gorenstein D. , '', in Finite Groups , (1968 ) -.

  • Guo, Wenbin, The Theory of Classes of Groups, Science Press-Kluwer Academic Publishers, Beijing-New York-Dordrecht-Boston-London, 2000.

    Guo W. , '', in The Theory of Classes of Groups , (2000 ) -.

  • Guo, Wenbin and Skiba, Alexander N., Finite groups with given s-embedded and n-embedded subgroups, J. Algebra., 321(10) (2009), 2843–2860.

    Skiba A. N. , 'Finite groups with given s-embedded and n-embedded subgroups ' (2009 ) 321 J. Algebra. : 2843 -2860.

    • Search Google Scholar
  • Huppert, B., Normalteiler and maximal Untergruppen endlicher gruppen, Math. Z., (60) (1954), 409–434.

    Huppert B. , 'Normalteiler and maximal Untergruppen endlicher gruppen ' (1954 ) 60 Math. Z. : 409 -434.

    • Search Google Scholar
  • Huppert, B., Endliche Gruppen I, Springer-Verlag, Berlin-Heidelberg-New York, 1967.

    Huppert B. , '', in Endliche Gruppen I , (1967 ) -.

  • Kegel, O., Sylow-Gruppen and Subnormalteiler endlicher Gruppen, Math. Z., 78 (1962), 205–221.

    Kegel O. , 'Sylow-Gruppen and Subnormalteiler endlicher Gruppen ' (1962 ) 78 Math. Z. : 205 -221.

    • Search Google Scholar
  • Laue, R., Dualization for saturation for locally defined formations, J. Algebra, 52 (1978), 347–353.

    Laue R. , 'Dualization for saturation for locally defined formations ' (1978 ) 52 J. Algebra : 347 -353.

    • Search Google Scholar
  • Schmid, P., Subgroups permutable with all Sylow subgroups, J. Algebra, 82 (1998), 285–293.

    Schmid P. , 'Subgroups permutable with all Sylow subgroups ' (1998 ) 82 J. Algebra : 285 -293.

    • Search Google Scholar
  • Shaalan, A., The inuence of π-quasinormality of some subgroups on the structure of a finite group, Acta Math. Hungar., 56 (1990), 287–293.

    Shaalan A. , 'The inuence of π-quasinormality of some subgroups on the structure of a finite group ' (1990 ) 56 Acta Math. Hungar. : 287 -293.

    • Search Google Scholar
  • Shemetkov, L. A., Formations of finite groups, Nauka, Main Editorial Board for Physical and Mathematical Literature, Moscow, 1978.

    Shemetkov L. A. , '', in Formations of finite groups , (1978 ) -.

  • Skiba, Alexander N., On weakly s-permutable subgroups of finite groups, J. Algebra., 315(1) (2007), 192–209.

    Skiba A. N. , 'On weakly s-permutable subgroups of finite groups ' (2007 ) 315 J. Algebra. : 192 -209.

    • Search Google Scholar
  • Skiba, Alexander N., On two questions of L. A. Shemetkov concerning hyper-cyclically embedded subgroups of finite groups, J. Group Theory, (2010)/DOI 10.1515/JGT.2010.

  • Wang, Y., c-normality of groups and its properties, J. Algebra, 180 (1996), 954–965.

    Wang Y. , 'c-normality of groups and its properties ' (1996 ) 180 J. Algebra : 954 -965.

  • Weinstein, M. (ed.), etc., Between Nilpotent and Solvable, Polygonal Publishing House, Passaic N. J., 1982.

    Weinstein M. , '', in Between Nilpotent and Solvable , (1982 ) -.

  • Wielandt, H., Subnormal subgroups and permutation groups, Lectures given at the Ohio State University, Columbus, Ohio, 1971.

    Wielandt H. , '', in Subnormal subgroups and permutation groups , (1971 ) -.

Editors in Chief

Gábor SIMONYI (Rényi Institute of Mathematics)
András STIPSICZ (Rényi Institute of Mathematics)
Géza TÓTH (Rényi Institute of Mathematics) 

Managing Editor

Gábor SÁGI (Rényi Institute of Mathematics)

Editorial Board

  • Imre BÁRÁNY (Rényi Institute of Mathematics)
  • Károly BÖRÖCZKY (Rényi Institute of Mathematics and Central European University)
  • Péter CSIKVÁRI (ELTE, Budapest) 
  • Joshua GREENE (Boston College)
  • Penny HAXELL (University of Waterloo)
  • Andreas HOLMSEN (Korea Advanced Institute of Science and Technology)
  • Ron HOLZMAN (Technion, Haifa)
  • Satoru IWATA (University of Tokyo)
  • Tibor JORDÁN (ELTE, Budapest)
  • Roy MESHULAM (Technion, Haifa)
  • Frédéric MEUNIER (École des Ponts ParisTech)
  • Márton NASZÓDI (ELTE, Budapest)
  • Eran NEVO (Hebrew University of Jerusalem)
  • János PACH (Rényi Institute of Mathematics)
  • Péter Pál PACH (BME, Budapest)
  • Andrew SUK (University of California, San Diego)
  • Zoltán SZABÓ (Princeton University)
  • Martin TANCER (Charles University, Prague)
  • Gábor TARDOS (Rényi Institute of Mathematics)
  • Paul WOLLAN (University of Rome "La Sapienza")

STUDIA SCIENTIARUM MATHEMATICARUM HUNGARICA
Gábor Sági
Address: P.O. Box 127, H–1364 Budapest, Hungary
Phone: (36 1) 483 8344 ---- Fax: (36 1) 483 8333
E-mail: smh.studia@renyi.mta.hu

Indexing and Abstracting Services:

  • CompuMath Citation Index
  • Essential Science Indicators
  • Mathematical Reviews
  • Science Citation Index Expanded (SciSearch)
  • SCOPUS
  • Zentralblatt MATH
2020  
Total Cites 536
WoS
Journal
Impact Factor
0,855
Rank by Mathematics 189/330 (Q3)
Impact Factor  
Impact Factor 0,826
without
Journal Self Cites
5 Year 1,703
Impact Factor
Journal  0,68
Citation Indicator  
Rank by Journal  Mathematics 230/470 (Q2)
Citation Indicator   
Citable 32
Items
Total 32
Articles
Total 0
Reviews
Scimago 24
H-index
Scimago 0,307
Journal Rank
Scimago Mathematics (miscellaneous) Q3
Quartile Score  
Scopus 139/130=1,1
Scite Score  
Scopus General Mathematics 204/378 (Q3)
Scite Score Rank  
Scopus 1,069
SNIP  
Days from  85
sumbission  
to acceptance  
Days from  123
acceptance  
to publication  
Acceptance 16%
Rate

2019  
Total Cites
WoS
463
Impact Factor 0,468
Impact Factor
without
Journal Self Cites
0,468
5 Year
Impact Factor
0,413
Immediacy
Index
0,135
Citable
Items
37
Total
Articles
37
Total
Reviews
0
Cited
Half-Life
21,4
Citing
Half-Life
15,5
Eigenfactor
Score
0,00039
Article Influence
Score
0,196
% Articles
in
Citable Items
100,00
Normalized
Eigenfactor
0,04841
Average
IF
Percentile
13,117
Scimago
H-index
23
Scimago
Journal Rank
0,234
Scopus
Scite Score
76/104=0,7
Scopus
Scite Score Rank
General Mathematics 247/368 (Q3)
Scopus
SNIP
0,671
Acceptance
Rate
14%

 

Studia Scientiarum Mathematicarum Hungarica
Publication Model Hybrid
Submission Fee none
Article Processing Charge 900 EUR/article
Printed Color Illustrations 40 EUR (or 10 000 HUF) + VAT / piece
Regional discounts on country of the funding agency World Bank Lower-middle-income economies: 50%
World Bank Low-income economies: 100%
Further Discounts Editorial Board / Advisory Board members: 50%
Corresponding authors, affiliated to an EISZ member institution subscribing to the journal package of Akadémiai Kiadó: 100%
Subscription Information Online subsscription: 672 EUR / 840 USD
Print + online subscription: 760 EUR / 948 USD
Online subscribers are entitled access to all back issues published by Akadémiai Kiadó for each title for the duration of the subscription, as well as Online First content for the subscribed content.
Purchase per Title Individual articles are sold on the displayed price.

Studia Scientiarum Mathematicarum Hungarica
Language English
French
German
Size B5
Year of
Foundation
1966
Publication
Programme
2021 Volume 58
Volumes
per Year
1
Issues
per Year
4
Founder Magyar Tudományos Akadémia
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 0081-6906 (Print)
ISSN 1588-2896 (Online)