View More View Less
  • 1 GC University Abdus Salam School of Mathematical Sciences Lahore, 68-B New Muslim town Lahore Pakistan
  • 2 Vehari campus Comsats Institute of Information Technology Multan road Vehari Pakistan
Restricted access

Purchase article

USD  $25.00

1 year subscription (Individual Only)

USD  $800.00

We give an upper bound for the Stanley depth of the edge ideal I of a k-partite complete graph and show that Stanley’s conjecture holds for I. Also we give an upper bound for the Stanley depth of the edge ideal of a s-uniform complete bipartite hypergraph.

  • Apel, J., On a conjecture of R.P. Stanley, Part I — Monomial ideals, J. Algebraic Combin., 17 (2003), 39–56.

    Apel J. , 'On a conjecture of R.P. Stanley, Part I — Monomial ideals ' (2003 ) 17 J. Algebraic Combin. : 39 -56.

    • Search Google Scholar
  • Anwar, I. and Popescu, D., Stanley conjecture in small embedding dimension, J. Algebra, 318 (2007), 1027–1031.

    Popescu D. , 'Stanley conjecture in small embedding dimension ' (2007 ) 318 J. Algebra : 1027 -1031.

    • Search Google Scholar
  • Cimpoeaş, M., Stanley depth of square free Veronese ideals, arXiv:0907.1232v1.

  • Cipu, M. and Qureshi, M. I., On the behaviour of Stanley depth under variable adjunction, to appear in Bull. Math. Soc. Sci. Math. Roumanie.

  • Ge, M., Lin, J. and Shen, Y., On a conjecture of Stanley depth of squarefree Veronese ideals, arXiv:0911.5458v3.

  • Herzog, J., Vlădoiu, M. and Zheng, X., How to compute the Stanley depth of a monomial ideal, J. Algebra, 322 (2009), 3151–3169.

    Zheng X. , 'How to compute the Stanley depth of a monomial ideal ' (2009 ) 322 J. Algebra : 3151 -3169.

    • Search Google Scholar
  • Herzog, J., Popescu, D. and Vlădoiu, M., Stanley depth and size of a monomial ideal, to appear in Proceed. AMS.

  • Ishaq, M., Upper bounds for the Stanley depth, Communications in Algebra, 40(1) (2012), 87–97.

    Ishaq M. , 'Upper bounds for the Stanley depth ' (2012 ) 40 Communications in Algebra : 87 -97.

    • Search Google Scholar
  • Ishaq, M., Values and bounds of the Stanley depth, Carpathian J. Math., 27 (2011), no. 2, 217–224.

    Ishaq M. , 'Values and bounds of the Stanley depth ' (2011 ) 27 Carpathian J. Math. : 217 -224.

    • Search Google Scholar
  • Keller, M. T., Shen, Y., Streib, N. and Young, S. J., On the Stanley depth of squarefree Veronese ideals, arXiv:0910.4645v1.

  • Popescu, D., Stanley conjecture on intersection of four monomial prime ideals, arXiv:1009.5646v1.

  • Popescu, D., Stanley depth of multigraded modules, J. Algebra, 321 (2009), 2782–2797.

    Popescu D. , 'Stanley depth of multigraded modules ' (2009 ) 321 J. Algebra : 2782 -2797.

  • Popescu, D. and Qureshi, M. I., Computing the Stanley depth, J. Algebra, 323 (2010), 2943–2959.

    Qureshi M. I. , 'Computing the Stanley depth ' (2010 ) 323 J. Algebra : 2943 -2959.

  • Stanley, R., Linear Diophantine equations and local cohomology, Invent. Math., 68 (1982), 175–193.

    Stanley R. , 'Linear Diophantine equations and local cohomology ' (1982 ) 68 Invent. Math. : 175 -193.

    • Search Google Scholar