Let ν be a positive Borel measure on ℝ̄+:= [0;∞) and let p: ℝ̄+ → ℝ̄+ be a weight function which is locally integrable with respect to ν. We assume that
Agnew, R. P., On deferred Cesàro means, Annals of Math. (2), 33 (1932), 413–421.
Agnew R. P. , 'On deferred Cesàro means ' (1932 ) 33 Annals of Math. (2) : 413 -421.
Berkes, I., Csáki, E. and Horváth, L., An almost sure central limit theorem under minimal conditions, Stat Probab. Letters, 37 (1998), 67–76.
Horváth L. , 'An almost sure central limit theorem under minimal conditions ' (1998 ) 37 Stat Probab. Letters : 67 -76.
Hardy, G. H., Divergent Series, Clarendon Press, Oxford, 1949.
Hardy G. H. , '', in Divergent Series , (1949 ) -.
Móricz, F., On the harmonic averages of numerical sequences, Arch. Math. (Basel), 86 (2006), 375–384.
Móricz F. , 'On the harmonic averages of numerical sequences ' (2006 ) 86 Arch. Math. (Basel) : 375 -384.
Móricz, F. and Stadtmüller, U., Characterization of the convergence of weighted averages of sequences and functions, Periodica Math. Hungar., 65 (2012), 135–145.
Stadtmüller U. , 'Characterization of the convergence of weighted averages of sequences and functions ' (2012 ) 65 Periodica Math. Hungar. : 135 -145.
Révész, P., The Laws of Large Numbers, Akadémiai Kiadó, Budapest, 1967.
Révész P. , '', in The Laws of Large Numbers , (1967 ) -.
Witting, H., Mathematische Statistik, Vol. I, B. G. Teubner Verlag, Stuttgart, 1985.
Witting H. , '', in Mathematische Statistik , (1985 ) -.
Zygmund, A., Trigonometric Series, Vol. I, Cambridge Univ. Press, 1959.