Authors: and
View More View Less
• 1 University of Szeged Bolyai Institute Aradi vértanúk tere 1 H-6720 Szeged Hungary
• | 2 Universität Ulm Abt. Zahlentheorie und Wahrscheinlichkeitstheorie D-89069 Ulm Germany
Restricted access

USD  $25.00 ### 1 year subscription (Individual Only) USD$800.00

Let ν be a positive Borel measure on ℝ̄+:= [0;∞) and let p: ℝ̄+ → ℝ̄+ be a weight function which is locally integrable with respect to ν. We assume that \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{bbm} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $P(t): = \int\limits_0^t {p(u)d\nu (u) \to \infty } andP(t - 0)/P(t) \to 1ast \to \infty .$ \end{document} Let f: ℝ̄+ → ℂ be a locally integrable function with respect to p dν, and define its weighted averages by \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{bbm} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $\sigma _t (f;pd\nu ): = \frac{1}{{P(t)}}\int\limits_0^t {f(u)p(u)d\nu (u)}$ \end{document} for large enough t, where P(t) > 0. We prove necessary and sufficient conditions under which the finite limit \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{bbm} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $\sigma _t (f;pd\nu ) \to Last \to \infty$ \end{document} exists. This characterization is a unified extension of the results in [5], and it may find application in Probability Theory and Stochastic Processes.

• Agnew, R. P., On deferred Cesàro means, Annals of Math. (2), 33 (1932), 413–421.

Agnew R. P. , 'On deferred Cesàro means ' (1932 ) 33 Annals of Math. (2) : 413 -421.

• Berkes, I., Csáki, E. and Horváth, L., An almost sure central limit theorem under minimal conditions, Stat Probab. Letters, 37 (1998), 67–76.

Horváth L. , 'An almost sure central limit theorem under minimal conditions ' (1998 ) 37 Stat Probab. Letters : 67 -76.

• Hardy, G. H., Divergent Series, Clarendon Press, Oxford, 1949.

Hardy G. H. , '', in Divergent Series , (1949 ) -.

• Móricz, F., On the harmonic averages of numerical sequences, Arch. Math. (Basel), 86 (2006), 375–384.

Móricz F. , 'On the harmonic averages of numerical sequences ' (2006 ) 86 Arch. Math. (Basel) : 375 -384.

• Móricz, F. and Stadtmüller, U., Characterization of the convergence of weighted averages of sequences and functions, Periodica Math. Hungar., 65 (2012), 135–145.

Stadtmüller U. , 'Characterization of the convergence of weighted averages of sequences and functions ' (2012 ) 65 Periodica Math. Hungar. : 135 -145.

• Révész, P., The Laws of Large Numbers, Akadémiai Kiadó, Budapest, 1967.

Révész P. , '', in The Laws of Large Numbers , (1967 ) -.

• Witting, H., Mathematische Statistik, Vol. I, B. G. Teubner Verlag, Stuttgart, 1985.

Witting H. , '', in Mathematische Statistik , (1985 ) -.

• Zygmund, A., Trigonometric Series, Vol. I, Cambridge Univ. Press, 1959.

Editors in Chief

Gábor SIMONYI (Rényi Institute of Mathematics)
András STIPSICZ (Rényi Institute of Mathematics)
Géza TÓTH (Rényi Institute of Mathematics)

Managing Editor

Gábor SÁGI (Rényi Institute of Mathematics)

Editorial Board

• Imre BÁRÁNY (Rényi Institute of Mathematics)
• Károly BÖRÖCZKY (Rényi Institute of Mathematics and Central European University)
• Péter CSIKVÁRI (ELTE, Budapest)
• Joshua GREENE (Boston College)
• Penny HAXELL (University of Waterloo)
• Andreas HOLMSEN (Korea Advanced Institute of Science and Technology)
• Ron HOLZMAN (Technion, Haifa)
• Satoru IWATA (University of Tokyo)
• Tibor JORDÁN (ELTE, Budapest)
• Roy MESHULAM (Technion, Haifa)
• Frédéric MEUNIER (École des Ponts ParisTech)
• Márton NASZÓDI (ELTE, Budapest)
• Eran NEVO (Hebrew University of Jerusalem)
• János PACH (Rényi Institute of Mathematics)
• Péter Pál PACH (BME, Budapest)
• Andrew SUK (University of California, San Diego)
• Zoltán SZABÓ (Princeton University)
• Martin TANCER (Charles University, Prague)
• Gábor TARDOS (Rényi Institute of Mathematics)
• Paul WOLLAN (University of Rome "La Sapienza")

STUDIA SCIENTIARUM MATHEMATICARUM HUNGARICA
Gábor Sági
Address: P.O. Box 127, H–1364 Budapest, Hungary
Phone: (36 1) 483 8344 ---- Fax: (36 1) 483 8333
E-mail: smh.studia@renyi.mta.hu

Indexing and Abstracting Services:

• CompuMath Citation Index
• Essential Science Indicators
• Mathematical Reviews
• Science Citation Index Expanded (SciSearch)
• SCOPUS
• Zentralblatt MATH

2019
Total Cites
WoS
463
Impact Factor 0,468
Impact Factor
without
Journal Self Cites
0,468
5 Year
Impact Factor
0,413
Immediacy
Index
0,135
Citable
Items
37
Total
Articles
37
Total
Reviews
0
Cited
Half-Life
21,4
Citing
Half-Life
15,5
Eigenfactor
Score
0,00039
Article Influence
Score
0,196
% Articles
in
Citable Items
100,00
Normalized
Eigenfactor
0,04841
Average
IF
Percentile
13,117
Scimago
H-index
23
Scimago
Journal Rank
0,234
Scopus
Scite Score
76/104=0,7
Scopus
Scite Score Rank
General Mathematics 247/368 (Q3)
Scopus
SNIP
0,671
Acceptance
Rate
14%

Studia Scientiarum Mathematicarum Hungarica
Publication Model Hybrid
Submission Fee none
Article Processing Charge 900 EUR/article
Printed Color Illustrations 40 EUR (or 10 000 HUF) + VAT / piece
Regional discounts on country of the funding agency World Bank Lower-middle-income economies: 50%
World Bank Low-income economies: 100%
Further Discounts Editorial Board / Advisory Board members: 50%
Corresponding authors, affiliated to an EISZ member institution subscribing to the journal package of Akadémiai Kiadó: 100%
Subscription Information Online subsscription: 672 EUR / 840 USD
Print + online subscription: 760 EUR / 948 USD
Purchase per Title Individual articles are sold on the displayed price.

Studia Scientiarum Mathematicarum Hungarica
Language English
French
German
Size B5
Year of
Foundation
1966
Publication
Programme
2021 Volume 58
Volumes
per Year
1
Issues
per Year
4
Founder's
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher's
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
ISSN 0081-6906 (Print)
ISSN 1588-2896 (Online)

Jan 2021 1 0 0
Feb 2021 0 0 0
Mar 2021 4 0 0
Apr 2021 0 0 0
May 2021 2 0 0
Jun 2021 1 0 0
Jul 2021 0 0 0

## The unit balls of ℒ ( n l ∞ m ) and ℒ s ( n l ∞ m )

Author: Sung Guen Kim

## Another characterization of congruence distributive varieties

Author: Paolo Lipparini

## Lemniscate and exponential starlikeness of regular Coulomb wave functions

Author: İbrahim Aktaş