Authors: and
View More View Less
• 1 Amirkabir University of Technology (Tehran Polytechnic) Faculty of Mathematics and Computer Science Tehran Iran
• | 2 Shahrekord University Department of Mathematics P.O.Box: 115 Shahrekord Iran
Restricted access

USD  $25.00 ### 1 year subscription (Individual Only) USD$800.00
Let V be the 2-dimensional column vector space over a finite field
\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{bbm} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$\mathbb{F}_q$$ \end{document}
(where q is necessarily a power of a prime number) and let ℙq be the projective line over
\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{bbm} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$\mathbb{F}_q$$ \end{document}
. In this paper, it is shown that GL2(q), for q ≠ 3, and SL2(q) acting on V − {0} have the strict EKR property and GL2(3) has the EKR property, but it does not have the strict EKR property. Also, we show that GLn(q) acting on
\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{bbm} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$\left( {\mathbb{F}_q } \right)^n - \left\{ 0 \right\}$$ \end{document}
has the EKR property and the derangement graph of PSL2(q) acting on ℙq, where q ≡ −1 (mod 4), has a clique of size q + 1.
• Cameron, P. J. and Ku, C. Y., Intersecting families of permutations, European J. Combin., 24(7) (2003), 881–890.

Ku C. Y. , 'Intersecting families of permutations ' (2003 ) 24 European J. Combin. : 881 -890.

• Deza, M. and Frankl, P., On the maximal number of permutations with given maximal or minimal distance, J. Combin. The. Ser. A, 22 (1977), 352–360.

Frankl P. , 'On the maximal number of permutations with given maximal or minimal distance ' (1977 ) 22 J. Combin. The. Ser. A : 352 -360.

• Erdös, P., Ko, C. and Rado, R., Intersecting theorems for systems of finite sets, Quart. J. Math. Oxford Ser., 12(2) (1961), 313–320.

Rado R. , 'Intersecting theorems for systems of finite sets ' (1961 ) 12 Quart. J. Math. Oxford Ser. : 313 -320.

• Godsil, C. and Meagher, K., A new proof of the Erdös-Ko-Rado theorem for intersecting families of permutations, European J. Combin., 30 (2009), 404–414.

Meagher K. , 'A new proof of the Erdös-Ko-Rado theorem for intersecting families of permutations ' (2009 ) 30 European J. Combin. : 404 -414.

• Ku, C. Y. and Wong, T. W., Intersecting families in the alternating group and direct product of symmetric groups, Electron. J. Combin., 14 (2007), 15 pp.

Wong T. W. , 'Intersecting families in the alternating group and direct product of symmetric groups ' (2007 ) 14 Electron. J. Combin. : 15 -.

• Larose, B. and Malvenuto, C., Stable sets of maximal size in Kneser-type graphs, European J. Combin., 25(5) (2004), 657–673.

Malvenuto C. , 'Stable sets of maximal size in Kneser-type graphs ' (2004 ) 25 European J. Combin. : 657 -673.

• Meagher, K. and Spiga, P., An Erdös-Ko-Rado theorem for the derangement graph of PGL2(q) acting on the projective line, J. Combin. The. Ser. A, 118 (2011), 532–544.

Spiga P. , 'An Erdös-Ko-Rado theorem for the derangement graph of PGL2(q) acting on the projective line ' (2011 ) 118 J. Combin. The. Ser. A : 532 -544.

• Wang, J. and Zhang, S. J., An Erdös-Ko-Rado theorem in Coxeter groups, European J. Combin., 29 (2008), 1112–1115.

Zhang S. J. , 'An Erdös-Ko-Rado theorem in Coxeter groups ' (2008 ) 29 European J. Combin. : 1112 -1115.

Editors in Chief

Gábor SIMONYI (Rényi Institute of Mathematics)
András STIPSICZ (Rényi Institute of Mathematics)
Géza TÓTH (Rényi Institute of Mathematics)

Managing Editor

Gábor SÁGI (Rényi Institute of Mathematics)

Editorial Board

• Imre BÁRÁNY (Rényi Institute of Mathematics)
• Károly BÖRÖCZKY (Rényi Institute of Mathematics and Central European University)
• Péter CSIKVÁRI (ELTE, Budapest)
• Joshua GREENE (Boston College)
• Penny HAXELL (University of Waterloo)
• Andreas HOLMSEN (Korea Advanced Institute of Science and Technology)
• Ron HOLZMAN (Technion, Haifa)
• Satoru IWATA (University of Tokyo)
• Tibor JORDÁN (ELTE, Budapest)
• Roy MESHULAM (Technion, Haifa)
• Frédéric MEUNIER (École des Ponts ParisTech)
• Márton NASZÓDI (ELTE, Budapest)
• Eran NEVO (Hebrew University of Jerusalem)
• János PACH (Rényi Institute of Mathematics)
• Péter Pál PACH (BME, Budapest)
• Andrew SUK (University of California, San Diego)
• Zoltán SZABÓ (Princeton University)
• Martin TANCER (Charles University, Prague)
• Gábor TARDOS (Rényi Institute of Mathematics)
• Paul WOLLAN (University of Rome "La Sapienza")

STUDIA SCIENTIARUM MATHEMATICARUM HUNGARICA
Gábor Sági
Address: P.O. Box 127, H–1364 Budapest, Hungary
Phone: (36 1) 483 8344 ---- Fax: (36 1) 483 8333
E-mail: smh.studia@renyi.mta.hu

Indexing and Abstracting Services:

• CompuMath Citation Index
• Essential Science Indicators
• Mathematical Reviews
• Science Citation Index Expanded (SciSearch)
• SCOPUS
• Zentralblatt MATH
 2020 Total Cites 536 WoS Journal Impact Factor 0,855 Rank by Mathematics 189/330 (Q3) Impact Factor Impact Factor 0,826 without Journal Self Cites 5 Year 1,703 Impact Factor Journal 0,68 Citation Indicator Rank by Journal Mathematics 230/470 (Q2) Citation Indicator Citable 32 Items Total 32 Articles Total 0 Reviews Scimago 24 H-index Scimago 0,307 Journal Rank Scimago Mathematics (miscellaneous) Q3 Quartile Score Scopus 139/130=1,1 Scite Score Scopus General Mathematics 204/378 (Q3) Scite Score Rank Scopus 1,069 SNIP Days from 85 submission to acceptance Days from 123 acceptance to publication Acceptance 16% Rate

2019
Total Cites
WoS
463
Impact Factor 0,468
Impact Factor
without
Journal Self Cites
0,468
5 Year
Impact Factor
0,413
Immediacy
Index
0,135
Citable
Items
37
Total
Articles
37
Total
Reviews
0
Cited
Half-Life
21,4
Citing
Half-Life
15,5
Eigenfactor
Score
0,00039
Article Influence
Score
0,196
% Articles
in
Citable Items
100,00
Normalized
Eigenfactor
0,04841
Average
IF
Percentile
13,117
Scimago
H-index
23
Scimago
Journal Rank
0,234
Scopus
Scite Score
76/104=0,7
Scopus
Scite Score Rank
General Mathematics 247/368 (Q3)
Scopus
SNIP
0,671
Acceptance
Rate
14%

Studia Scientiarum Mathematicarum Hungarica
Publication Model Hybrid
Submission Fee none
Article Processing Charge 900 EUR/article
Printed Color Illustrations 40 EUR (or 10 000 HUF) + VAT / piece
Regional discounts on country of the funding agency World Bank Lower-middle-income economies: 50%
World Bank Low-income economies: 100%
Further Discounts Editorial Board / Advisory Board members: 50%
Corresponding authors, affiliated to an EISZ member institution subscribing to the journal package of Akadémiai Kiadó: 100%
Subscription fee 2022

Online subsscription: 688 EUR / 860 USD
Print + online subscription: 776 EUR / 970 USD

Subscription Information Online subscribers are entitled access to all back issues published by Akadémiai Kiadó for each title for the duration of the subscription, as well as Online First content for the subscribed content.
Purchase per Title Individual articles are sold on the displayed price.

Studia Scientiarum Mathematicarum Hungarica
Language English
French
German
Size B5
Year of
Foundation
1966
Volumes
per Year
1
Issues
per Year
4
Founder's
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher's
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
ISSN 0081-6906 (Print)
ISSN 1588-2896 (Online)