View More View Less
  • 1 Hunan Agricultural University Oriental Science and Technology College Changsha 410128 China
  • 2 Hunan Agricultural University Science College Changsha 410128 China
  • 3 Jinan University Packaging Engineering Institute Zhuhai 519070 China
  • 4 Guangdong Construction Vocational Technology Institute Modern Business and Management Department Guangzhou 510450 China
Restricted access

Purchase article

USD  $25.00

1 year subscription (Individual Only)

USD  $800.00

In this paper, a fourth-order nonlinear difference equation is considered. By making use of the critical point theory, we establish various sets of sufficient conditions for the existence and nonexistence of solutions for Neumann boundary value problem and give some new results. Results obtained generalize and complement the existing ones.

  • Agarwal, R. P. and Wong, P. J. Y., Advanced Topics in Difference Equations, Kluwer Academic Publishers, Dordrecht (1997).

    P. J. Y W. , '', in Advanced Topics in Difference Equations , (1997 ) -.

  • Anuradha, V., Maya, C. and Shivaji, R., Positive solutions for a class of nonlinear boundary value problems with Neumann-Robin boundary conditions, J. Math. Anal. Appl., 236(1) (1999), 94–124.

    R S. , 'Positive solutions for a class of nonlinear boundary value problems with Neumann-Robin boundary conditions ' (1999 ) 236 J. Math. Anal. Appl. : 94 -124.

    • Search Google Scholar
  • Arcoya, D., Positive solutions for semilinear Dirichlet problems in an annulus, J. Differential Equations, 94(2) (1991), 217–227.

    D A. , 'Positive solutions for semilinear Dirichlet problems in an annulus ' (1991 ) 94 J. Differential Equations : 217 -227.

    • Search Google Scholar
  • Bai, Z. and Wang, H., On positive solutions of some nonlinear fourth-order beam equations, J. Math. Anal. Appl., 270(2) (2002), 357–368.

    H W. , 'On positive solutions of some nonlinear fourth-order beam equations ' (2002 ) 270 J. Math. Anal. Appl. : 357 -368.

    • Search Google Scholar
  • Cai, X. C., Yu, J. S. and Guo, Z. M., Existence of periodic solutions for fourthorder difference equations, Comput. Math. Appl., 50(1–2) (2005), 49–55.

    Z. M G. , 'Existence of periodic solutions for fourthorder difference equations ' (2005 ) 50 Comput. Math. Appl. : 49 -55.

    • Search Google Scholar
  • Cecchi M., Marini, M. and Villari, G., On the monotonicity property for a certain class of second order differential equations, J. Differential Equations, 82(1) (1989), 15–27.

    G V. , 'On the monotonicity property for a certain class of second order differential equations ' (1989 ) 82 J. Differential Equations : 15 -27.

    • Search Google Scholar
  • Chen, S. Z., Disconjugacy, disfocality, and oscillation of second order difference equations, J. Differential Equations, 107(2) (1994), 383–394.

    S. Z C. , 'Disconjugacy, disfocality, and oscillation of second order difference equations ' (1994 ) 107 J. Differential Equations : 383 -394.

    • Search Google Scholar
  • Chen, P. and Fang, H., Existence of periodic and subharmonic solutions for secondorder p-Laplacian difference equations, Adv. Difference Equ., 2007 (2007), 1–9.

    H F. , 'Existence of periodic and subharmonic solutions for secondorder p-Laplacian difference equations ' (2007 ) 2007 Adv. Difference Equ. : 1 -9.

    • Search Google Scholar
  • Chen, P. and Tang, X. H., Existence of infinitely many homoclinic orbits for fourthorder difference systems containing both advance and retardation, Appl. Math. Comput., 217(9) (2011), 4408–4415.

    X. H T. , 'Existence of infinitely many homoclinic orbits for fourthorder difference systems containing both advance and retardation ' (2011 ) 217 Appl. Math. Comput. : 4408 -4415.

    • Search Google Scholar
  • Chen, P. and Tang, X. H., New existence and multiplicity of solutions for some Dirichlet problems with impulsive effects, Math. Comput. Modelling, 55(3–4) (2012), 723–739.

    X. H T. , 'New existence and multiplicity of solutions for some Dirichlet problems with impulsive effects ' (2012 ) 55 Math. Comput. Modelling : 723 -739.

    • Search Google Scholar
  • Cull P., Flahive, M. and Robson, R., Difference Equations: From Rabbits to Chaos, Springer, New York (2005).

    R R. , '', in Difference Equations: From Rabbits to Chaos , (2005 ) -.

  • Elaydi S., An Introduction to Difference Equations, Springer, New York (2005).

    S E. , '', in An Introduction to Difference Equations , (2005 ) -.

  • Fang, H. and Zhao, D. P., Existence of nontrivial homoclinic orbits for fourthorder difference equations, Appl. Math. Comput., 214(1) (2009), 163–170.

    D. P Z. , 'Existence of nontrivial homoclinic orbits for fourthorder difference equations ' (2009 ) 214 Appl. Math. Comput. : 163 -170.

    • Search Google Scholar
  • Guo, C. J., O’Regan, D. and Agarwal, R. P., Existence of multiple periodic solutions for a class of first-order neutral differential equations, Appl. Anal. Discrete Math., 5(1) (2011), 147–158.

    R. P A. , 'Existence of multiple periodic solutions for a class of first-order neutral differential equations ' (2011 ) 5 Appl. Anal. Discrete Math. : 147 -158.

    • Search Google Scholar
  • Guo, C. J., O’Regan, D., Xu, Y. T. and Agarwal, R. P., Existence and multiplicity of homoclinic orbits of a second-order differential difference equation via variational methods, Appl. Math. Inform. Mech., 4(1) (2012), 1–15.

    R. P A. , 'Existence and multiplicity of homoclinic orbits of a second-order differential difference equation via variational methods ' (2012 ) 4 Appl. Math. Inform. Mech. : 1 -15.

    • Search Google Scholar
  • Guo, C. J. and Xu, Y. T., Existence of periodic solutions for a class of second order differential equation with deviating argument, J. Appl. Math. Comput., 28(1–2) (2008), 425–433.

    Y. T X. , 'Existence of periodic solutions for a class of second order differential equation with deviating argument ' (2008 ) 28 J. Appl. Math. Comput. : 425 -433.

    • Search Google Scholar
  • Guo, Z. M. and Yu, J. S., Applications of critical point theory to difference equations, Fields Inst. Commun., 42 (2004), 187–200.

    J. S Y. , 'Applications of critical point theory to difference equations ' (2004 ) 42 Fields Inst. Commun. : 187 -200.

    • Search Google Scholar
  • Guo, Z. M. and Yu, J. S., Existence of periodic and subharmonic solutions for second-order superlinear difference equations, Sci. China Math., 46(4) (2003), 506–515.

    J. S Y. , 'Existence of periodic and subharmonic solutions for second-order superlinear difference equations ' (2003 ) 46 Sci. China Math. : 506 -515.

    • Search Google Scholar
  • Guo, Z. M. and Yu, J. S., The existence of periodic and subharmonic solutions of subquadratic second order difference equations, J. London Math. Soc., 68(2) (2003), 419–430.

    J. S Y. , 'The existence of periodic and subharmonic solutions of subquadratic second order difference equations ' (2003 ) 68 J. London Math. Soc. : 419 -430.

    • Search Google Scholar
  • Gupta, C. P., Existence and uniqueness theorems for the bending of an elastic beam equation, Appl. Anal., 26(4) (1988), 289–304.

    C. P G. , 'Existence and uniqueness theorems for the bending of an elastic beam equation ' (1988 ) 26 Appl. Anal. : 289 -304.

    • Search Google Scholar
  • Hale, J. K. and Mawhin, J., Coincidence degree and periodic solutions of neutral equations, J. Differential Equations, 15(2) (1974), 295–307.

    J M. , 'Coincidence degree and periodic solutions of neutral equations ' (1974 ) 15 J. Differential Equations : 295 -307.

    • Search Google Scholar
  • Han, G. and Xu, Z., Multiple solutions of some nonlinear fourth-order beam equations, Nonlinear Anal., 68(12) (2008), 3646–3656.

    Z X. , 'Multiple solutions of some nonlinear fourth-order beam equations ' (2008 ) 68 Nonlinear Anal. : 3646 -3656.

    • Search Google Scholar
  • Henderson, J. and Thompson, H. B., Existence of multiple solutions for secondorder discrete boundary value problems, Comput. Math. Appl., 43(10–11) (2002), 1239–1248.

    H. B T. , 'Existence of multiple solutions for secondorder discrete boundary value problems ' (2002 ) 43 Comput. Math. Appl. : 1239 -1248.

    • Search Google Scholar
  • Kocic, V. L. and Ladas, G., Global Behavior of Nonlinear Difference Equations of Higher Order with Applications, Kluwer Academic Publishers, Dordrecht (1993).

    G L. , '', in Global Behavior of Nonlinear Difference Equations of Higher Order with Applications , (1993 ) -.

    • Search Google Scholar
  • Li F., Zhang, Q. and Liang, Z., Existence and multiplicity of solutions of a kind of fourth-order boundary value problem, Nonlinear Anal., 62(5) (2005), 803–816.

    Z L. , 'Existence and multiplicity of solutions of a kind of fourth-order boundary value problem ' (2005 ) 62 Nonlinear Anal. : 803 -816.

    • Search Google Scholar
  • Liu, Y. J. and Ge, W. G., Twin positive solutions of boundary value problems for finite difference equations with p-Laplacian operator, J. Math. Anal. Appl., 278(2) (2003), 551–561.

    W. G G. , 'Twin positive solutions of boundary value problems for finite difference equations with p-Laplacian operator ' (2003 ) 278 J. Math. Anal. Appl. : 551 -561.

    • Search Google Scholar
  • Matsunaga H., Hara, T. and Sakata, S., Global attractivity for a nonlinear difference equation with variable delay, Computers Math. Appl., 41(5–6) (2001), 543–551.

    S S. , 'Global attractivity for a nonlinear difference equation with variable delay ' (2001 ) 41 Computers Math. Appl. : 543 -551.

    • Search Google Scholar
  • Mawhin, J. and Willem, M., Critical Point Theory and Hamiltonian Systems, Springer, New York (1989).

    M W. , '', in Critical Point Theory and Hamiltonian Systems , (1989 ) -.

  • Mickens, R. E., Difference Equations: Theory and Application, Van Nostrand Reinhold, New York (1990).

    R.^E M. , '', in Difference Equations: Theory and Application , (1990 ) -.

  • Pankov, A. and Zakhrchenko, N., On some discrete variational problems, Acta Appl. Math., 65(1–3) (2001), 295–303.

    N Z. , 'On some discrete variational problems ' (2001 ) 65 Acta Appl. Math. : 295 -303.

  • Peterson, A. and Ridenhour, J., The (2; 2)-disconjugacy of a fourth order difference equation, J. Difference Equ. Appl., 1(1) (1995), 87–93.

    J R. , 'The (2; 2)-disconjugacy of a fourth order difference equation ' (1995 ) 1 J. Difference Equ. Appl. : 87 -93.

    • Search Google Scholar
  • Popenda, J. and Schmeidel, E., On the solutions of fourth order difference equations, Rocky Mountain J. Math., 25(4) (1995), 1485–1499.

    E S. , 'On the solutions of fourth order difference equations ' (1995 ) 25 Rocky Mountain J. Math. : 1485 -1499.

    • Search Google Scholar
  • Rabinowitz, P. H., Minimax Methods in Critical Point Theory with Applications to Differential Equations, Amer. Math. Soc., Providence, RI, New York (1986).

    P. H R. , '', in Minimax Methods in Critical Point Theory with Applications to Differential Equations , (1986 ) -.

    • Search Google Scholar
  • Shi, H. P., Ling, W. P., Long, Y. H. and Zhang, H. Q., Periodic and subharmonic solutions for second order nonlinear functional difference equations, Commun. Math. Anal., 5(2) (2008), 50–59.

    H. Q Z. , 'Periodic and subharmonic solutions for second order nonlinear functional difference equations ' (2008 ) 5 Commun. Math. Anal. : 50 -59.

    • Search Google Scholar
  • Smets, D. and Willem, M., Solitary waves with prescribed speed on infinite lattices, J. Funct. Anal., 149(1) (1997), 266–275.

    M W. , 'Solitary waves with prescribed speed on infinite lattices ' (1997 ) 149 J. Funct. Anal. : 266 -275.

    • Search Google Scholar
  • Thandapani, E. and Arockiasamy, I. M., Fourth-order nonlinear oscillations of difference equations, Comput. Math. Appl., 42(3–5) (2001), 357–368.

    I. M A. , 'Fourth-order nonlinear oscillations of difference equations ' (2001 ) 42 Comput. Math. Appl. : 357 -368.

    • Search Google Scholar
  • Yan, J. and Liu, B., Oscillatory and asymptotic behavior of fourth order nonlinear difference equations, Acta. Math. Sinica, 13(1) (1997), 105–115.

    B L. , 'Oscillatory and asymptotic behavior of fourth order nonlinear difference equations ' (1997 ) 13 Acta. Math. Sinica : 105 -115.

    • Search Google Scholar
  • Yang, J. P., Sign-changing solutions to discrete fourth-order Neumann boundary value problems, Adv. Difference Equ., 2013 (2013), 1–10.

    J. P Y. , 'Sign-changing solutions to discrete fourth-order Neumann boundary value problems ' (2013 ) 2013 Adv. Difference Equ. : 1 -10.

    • Search Google Scholar
  • Yao, Q., Positive solutions of a nonlinear elastic beam equation rigidly fastened on the left and simply supported on the right, Nonlinear Anal., 69(5–6) (2008), 1570–1580.

    Q Y. , 'Positive solutions of a nonlinear elastic beam equation rigidly fastened on the left and simply supported on the right ' (2008 ) 69 Nonlinear Anal. : 1570 -1580.

    • Search Google Scholar
  • Yu, J. S. and Guo, Z. M., Boundary value problems of discrete generalized Emden-Fowler equation, Sci. China Math., 49(10) (2006), 1303–1314.

    Z. M G. , 'Boundary value problems of discrete generalized Emden-Fowler equation ' (2006 ) 49 Sci. China Math. : 1303 -1314.

    • Search Google Scholar
  • Yu, J. S. and Guo, Z. M., On boundary value problems for a discrete generalized Emden-Fowler equation, J. Differential Equations, 231(1) (2006), 18–31.

    Z. M G. , 'On boundary value problems for a discrete generalized Emden-Fowler equation ' (2006 ) 231 J. Differential Equations : 18 -31.

    • Search Google Scholar
  • Zhou, Z., Yu, J. S. and Chen, Y. M., Periodic solutions of a 2nth-order nonlinear difference equation, Sci. China Math., 53(1) (2010), 41–50.

    Y. M C. , 'Periodic solutions of a 2nth-order nonlinear difference equation ' (2010 ) 53 Sci. China Math. : 41 -50.

    • Search Google Scholar
  • Zou, W. M. and Schechter, M., Critical Point Theory and Its Applications, Springer, New York (2006).

    M S. , '', in Critical Point Theory and Its Applications , (2006 ) -.