View More View Less
  • 1 Yangzhou University School of Mathematics Yangzhou 225002 P. R. China
  • | 2 Wuxi Institute of Technology Wuxi 214073 China
Restricted access

Purchase article

USD  $25.00

1 year subscription (Individual Only)

USD  $800.00

A ring R is called NLI (rings whose nilpotent elements form a Lie ideal) if for each aN(R) and bR, abbaN(R). Clearly, NI rings are NLI. In this note, many properties of NLI rings are studied. The main results we obtain are the following: (1) NLI rings are directly finite and left min-abel; (2) If R is a NLI ring, then (a) R is a strongly regular ring if and only if R is a Von Neumann regular ring; (b) R is (weakly) exchange if and only if R is (weakly) clean; (c) R is a reduced ring if and only if R is a n-regular ring; (3) If R is a NLI left MC2 ring whose singular simple left modules are Wnil-injective, then R is reduced.

  • Badawi, A., On abelian II-regular rings, Comm. Algebra, 25(4) (1997), 1009–1021.

    Badawi A. , 'On abelian II-regular rings ' (1997 ) 25 Comm. Algebra : 1009 -1021.

  • Camillo, V. P. and Khurana, D., A characterization of unit regular rings, Comm. Algebra, 29 (2001), 2293–2295.

    Khurana D. , 'A characterization of unit regular rings ' (2001 ) 29 Comm. Algebra : 2293 -2295.

    • Search Google Scholar
  • Camillo, V. P. and Yu, H. P., Stable range one for rings with many idempotents, Tran. Amer. Math. Soc., 347(8) (1995), 3141–3147.

    Yu H. P. , 'Stable range one for rings with many idempotents ' (1995 ) 347 Tran. Amer. Math. Soc. : 3141 -3147.

    • Search Google Scholar
  • Chen, W. X. and Tong, W. T., Noncommutative V NL rings and GV NL rings, Glasgow Math. J., 48(1) (2006), 11–17.

    Tong W. T. , 'Noncommutative V NL rings and GV NL rings ' (2006 ) 48 Glasgow Math. J. : 11 -17.

    • Search Google Scholar
  • Chin, A. Y. M. and Qua, K. T., A note on weakly clean rings, Acta. Math. Hungar., 132(1–2) (2011), 113–116.

    Qua K. T. , 'A note on weakly clean rings ' (2011 ) 132 Acta. Math. Hungar. : 113 -116.

  • Henriksen, M., Two classes of rings that are generated by the ir units, J. Algebra, 31 (1974), 182–193.

    Henriksen M. , 'Two classes of rings that are generated by the ir units ' (1974 ) 31 J. Algebra : 182 -193.

    • Search Google Scholar
  • Hwang, S. U., Jeon, Y. C. and Park, K. S., On NCI rings, Bull. Korean Math. Soc., 44(2) (2007), 215–223.

    Park K. S. , 'On NCI rings ' (2007 ) 44 Bull. Korean Math. Soc. : 215 -223.

  • Kim, N. K., Nam, S. B. and Kim, J. Y., On simple singular GP-injective modules, Comm. Algebra, 27(5) (1999), 2087–2096.

    Kim J. Y. , 'On simple singular GP-injective modules ' (1999 ) 27 Comm. Algebra : 2087 -2096.

  • Lam, T. Y. and Dugas, A. S., Quas-duo rings and stable range descent, J. Pure Appl. Algebra, 195 (2005), 243–259.

    Dugas A. S. , 'Quas-duo rings and stable range descent ' (2005 ) 195 J. Pure Appl. Algebra : 243 -259.

    • Search Google Scholar
  • Ming, R. Y. C., Remarks on strongly regular rings, Purtugaliae Math., 44 (1987), 101–112.

    Ming R. Y. C. , 'Remarks on strongly regular rings ' (1987 ) 44 Purtugaliae Math. : 101 -112.

  • Nicholson, W. K., Lifting idempotents and exchange rings, Trans. Amer. Math. Soc., 229 (1977), 269–278.

    Nicholson W. K. , 'Lifting idempotents and exchange rings ' (1977 ) 229 Trans. Amer. Math. Soc. : 269 -278.

    • Search Google Scholar
  • Nicholson, W. K., Strongly clean rings and Fitting’s Lemma, Comm. Algebra, 27(8) (1999), 3583–3592.

    Nicholson W. K. , 'Strongly clean rings and Fitting’s Lemma ' (1999 ) 27 Comm. Algebra : 3583 -3592.

    • Search Google Scholar
  • Stock, J., On rings whose projective modules have exchange property, J. Algebra, 103 (1986), 437–453.

    Stock J. , 'On rings whose projective modules have exchange property ' (1986 ) 103 J. Algebra : 437 -453.

    • Search Google Scholar
  • Vaserstein, L. N., Bass’ first stable range condition, Pure Appl. Algebra, 34 (1984), 319–330.

    Vaserstein L. N. , 'Bass’ first stable range condition ' (1984 ) 34 Pure Appl. Algebra : 319 -330.

    • Search Google Scholar
  • Wei, J. C., Certain rings whose simple singular modules are nil-injective, Turk. J. Math., 32 (2008), 393–406.

    Wei J. C. , 'Certain rings whose simple singular modules are nil-injective ' (2008 ) 32 Turk. J. Math. : 393 -406.

    • Search Google Scholar
  • Wei, J. C., NPP rings, reduced rings and SNF rings, Intern. Electron. J. Algebra, 4 (2008), 9–26.

    Wei J. C. , 'NPP rings, reduced rings and SNF rings ' (2008 ) 4 Intern. Electron. J. Algebra : 9 -26.

    • Search Google Scholar
  • Wei, J. C. and Chen, J. H., Nil-injective, Intern. Electron. J. Algebra, 2 (2007), 1–21.

    Chen J. H. , 'Nil-injective ' (2007 ) 2 Intern. Electron. J. Algebra : 1 -21.

  • Wei, J. C. and Li, L. B., Quasi-normal rings, Comm. Algebra, 38 (2010), 1855–1868.

    Li L. B. , 'Quasi-normal rings ' (2010 ) 38 Comm. Algebra : 1855 -1868.

  • Wei, J. C. and Li., L. B., Weakly normal rings, Turk. Math. J., 36 (2012), 47–57.

    Li L. B. , 'Weakly normal rings ' (2012 ) 36 Turk. Math. J. : 47 -57.

  • Yu, H. P., Stable range one for exchange rings, J. Pure. Appl. Algebra, 98 (1995), 105–109.

    Yu H. P. , 'Stable range one for exchange rings ' (1995 ) 98 J. Pure. Appl. Algebra : 105 -109.

    • Search Google Scholar
  • Yu, H. P., On quasi-duo rings, Glasgow Math. J., 37 (1995), 21–31.

    Yu H. P. , 'On quasi-duo rings ' (1995 ) 37 Glasgow Math. J. : 21 -31.

Editors in Chief

Gábor SIMONYI (Rényi Institute of Mathematics)
András STIPSICZ (Rényi Institute of Mathematics)
Géza TÓTH (Rényi Institute of Mathematics) 

Managing Editor

Gábor SÁGI (Rényi Institute of Mathematics)

Editorial Board

  • Imre BÁRÁNY (Rényi Institute of Mathematics)
  • Károly BÖRÖCZKY (Rényi Institute of Mathematics and Central European University)
  • Péter CSIKVÁRI (ELTE, Budapest) 
  • Joshua GREENE (Boston College)
  • Penny HAXELL (University of Waterloo)
  • Andreas HOLMSEN (Korea Advanced Institute of Science and Technology)
  • Ron HOLZMAN (Technion, Haifa)
  • Satoru IWATA (University of Tokyo)
  • Tibor JORDÁN (ELTE, Budapest)
  • Roy MESHULAM (Technion, Haifa)
  • Frédéric MEUNIER (École des Ponts ParisTech)
  • Márton NASZÓDI (ELTE, Budapest)
  • Eran NEVO (Hebrew University of Jerusalem)
  • János PACH (Rényi Institute of Mathematics)
  • Péter Pál PACH (BME, Budapest)
  • Andrew SUK (University of California, San Diego)
  • Zoltán SZABÓ (Princeton University)
  • Martin TANCER (Charles University, Prague)
  • Gábor TARDOS (Rényi Institute of Mathematics)
  • Paul WOLLAN (University of Rome "La Sapienza")

STUDIA SCIENTIARUM MATHEMATICARUM HUNGARICA
Gábor Sági
Address: P.O. Box 127, H–1364 Budapest, Hungary
Phone: (36 1) 483 8344 ---- Fax: (36 1) 483 8333
E-mail: smh.studia@renyi.mta.hu

Indexing and Abstracting Services:

  • CompuMath Citation Index
  • Essential Science Indicators
  • Mathematical Reviews
  • Science Citation Index Expanded (SciSearch)
  • SCOPUS
  • Zentralblatt MATH
2020  
Total Cites 536
WoS
Journal
Impact Factor
0,855
Rank by Mathematics 189/330 (Q3)
Impact Factor  
Impact Factor 0,826
without
Journal Self Cites
5 Year 1,703
Impact Factor
Journal  0,68
Citation Indicator  
Rank by Journal  Mathematics 230/470 (Q2)
Citation Indicator   
Citable 32
Items
Total 32
Articles
Total 0
Reviews
Scimago 24
H-index
Scimago 0,307
Journal Rank
Scimago Mathematics (miscellaneous) Q3
Quartile Score  
Scopus 139/130=1,1
Scite Score  
Scopus General Mathematics 204/378 (Q3)
Scite Score Rank  
Scopus 1,069
SNIP  
Days from  85
submission  
to acceptance  
Days from  123
acceptance  
to publication  
Acceptance 16%
Rate

2019  
Total Cites
WoS
463
Impact Factor 0,468
Impact Factor
without
Journal Self Cites
0,468
5 Year
Impact Factor
0,413
Immediacy
Index
0,135
Citable
Items
37
Total
Articles
37
Total
Reviews
0
Cited
Half-Life
21,4
Citing
Half-Life
15,5
Eigenfactor
Score
0,00039
Article Influence
Score
0,196
% Articles
in
Citable Items
100,00
Normalized
Eigenfactor
0,04841
Average
IF
Percentile
13,117
Scimago
H-index
23
Scimago
Journal Rank
0,234
Scopus
Scite Score
76/104=0,7
Scopus
Scite Score Rank
General Mathematics 247/368 (Q3)
Scopus
SNIP
0,671
Acceptance
Rate
14%

 

Studia Scientiarum Mathematicarum Hungarica
Publication Model Hybrid
Submission Fee none
Article Processing Charge 900 EUR/article
Printed Color Illustrations 40 EUR (or 10 000 HUF) + VAT / piece
Regional discounts on country of the funding agency World Bank Lower-middle-income economies: 50%
World Bank Low-income economies: 100%
Further Discounts Editorial Board / Advisory Board members: 50%
Corresponding authors, affiliated to an EISZ member institution subscribing to the journal package of Akadémiai Kiadó: 100%
Subscription fee 2022

Online subsscription: 688 EUR / 860 USD
Print + online subscription: 776 EUR / 970 USD

Subscription Information Online subscribers are entitled access to all back issues published by Akadémiai Kiadó for each title for the duration of the subscription, as well as Online First content for the subscribed content.
Purchase per Title Individual articles are sold on the displayed price.

Studia Scientiarum Mathematicarum Hungarica
Language English
French
German
Size B5
Year of
Foundation
1966
Volumes
per Year
1
Issues
per Year
4
Founder Magyar Tudományos Akadémia  
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 0081-6906 (Print)
ISSN 1588-2896 (Online)