View More View Less
  • 1 Masaryk University, Faculty of Science Department of Mathematics and Statistics Kotlářská 2 Brno CZ-611 37 Czech Republic
Restricted access

Purchase article

USD  $25.00

1 year subscription (Individual Only)

USD  $800.00

We analyse the oscillation and non-oscillation of second-order half-linear differential equations with periodic and asymptotically almost periodic coefficients, where the equations have the so-called Riemann-Weber form. For these equations, we find an explicit oscillation constant. Corollaries and examples are mentioned as well.

  • Agarwal, R.P., Grace, A.R. and O’Regan, D., Oscillation theory for second order linear, half-linear, superlinear and sublinear dynamic equations, Kluwer Academic Publishers, Dordrecht, 2002.

    O’Regan D. , '', in Oscillation theory for second order linear, half-linear, superlinear and sublinear dynamic equations , (2002 ) -.

  • Ammann, K. and Teschl, G., Relative oscillation theory for Jacobi matrices, Difference equations and applications, pp. 105–115, Uğur-Bahçeşehir Univ. Publ. Co., Istanbul, 2009.

    Teschl G. , '', in Relative oscillation theory for Jacobi matrices , (2009 ) -.

  • Cheban, D.N., Asymptotically almost periodic solutions of differential equations, Hindawi Publishing Corporation, New York, 2009.

    Cheban D.N. , '', in Asymptotically almost periodic solutions of differential equations , (2009 ) -.

  • Corduneanu, C., Almost periodic functions, John Wiley and Sons, New York, 1968.

    Corduneanu C. , '', in Almost periodic functions , (1968 ) -.

  • Corduneanu, C., Almost periodic oscillations and waves, Springer, New York, 2009.

    Corduneanu C. , '', in Almost periodic oscillations and waves , (2009 ) -.

  • Došlý, O. and Fišnarová, S., Half-linear oscillation criteria: perturbation in term involving derivative, Nonlinear Anal., 73 (2010), no. 12, pp. 3756–3766.

    Fišnarová S. , 'Half-linear oscillation criteria: perturbation in term involving derivative ' (2010 ) 73 Nonlinear Anal. : 3756 -3766.

    • Search Google Scholar
  • Došlý, O. and Funková, H., Perturbations of half-linear Euler differential equation and transformations of modified Riccati equation, Abstr. Appl. Anal., 2012 (2012), art. ID 738472, pp. 1–19.

    Funková H. , 'Perturbations of half-linear Euler differential equation and transformations of modified Riccati equation ' (2012 ) 2012 Abstr. Appl. Anal. : 1 -19.

    • Search Google Scholar
  • Došlý, O. and Haladová, H., Half-linear Euler differential equations in the critical case, Tatra Mt. Math. Publ., 48 (2011), pp. 41–49.

    Haladová H. , 'Half-linear Euler differential equations in the critical case ' (2011 ) 48 Tatra Mt. Math. Publ. : 41 -49.

    • Search Google Scholar
  • Došlý, O. and Hasil, P., Critical oscillation constant for half-linear differential equations with periodic coefficients, Ann. Mat. Pura Appl., 190 (2011), no. 3, pp. 395–408.

    Hasil P. , 'Critical oscillation constant for half-linear differential equations with periodic coefficients ' (2011 ) 190 Ann. Mat. Pura Appl. : 395 -408.

    • Search Google Scholar
  • Došlý, O. and Řehák, P., Half-linear differential equations, Elsevier, Amsterdam, 2005.

    Řehák P. , '', in Half-linear differential equations , (2005 ) -.

  • Došlý, O. and Řezníčková, J., Nonprincipal solutions in oscillation criteria for half-linear differential equations, Studia Sci. Math. Hungar., 47 (2010), no. 1, pp. 127–137.

    Řezníčková J. , 'Nonprincipal solutions in oscillation criteria for half-linear differential equations ' (2010 ) 47 Studia Sci. Math. Hungar. : 127 -137.

    • Search Google Scholar
  • Elbert, Á., A half-linear second order differential equation, Colloq. Math. Soc. János Bolyai, 30 (1979), pp. 158–180.

    Elbert , 'A half-linear second order differential equation ' (1979 ) 30 Colloq. Math. Soc. János Bolyai : 158 -180.

    • Search Google Scholar
  • Elbert, Á., Asymptotic behaviour of autonomous half-linear differential systems on the plane, Studia Sci. Math. Hungar., 19 (1984), no. 2–4, pp. 447–464.

    Elbert , 'Asymptotic behaviour of autonomous half-linear differential systems on the plane ' (1984 ) 19 Studia Sci. Math. Hungar. : 447 -464.

    • Search Google Scholar
  • Elbert, Á. and Schneider, A., Perturbations of half-linear Euler differential equation, Results Math., 37 (2000), no. 1–2, pp. 56–83.

    Schneider A. , 'Perturbations of half-linear Euler differential equation ' (2000 ) 37 Results Math. : 56 -83.

    • Search Google Scholar
  • Fink, A.M., Almost periodic differential equations, Springer-Verlag, Berlin, 1974.

    Fink A.M. , '', in Almost periodic differential equations , (1974 ) -.

  • Gesztesy, F. and Ünal, M., Perturbative oscillation criteria and Hardy-type inequalities, Math. Nachr., 189 (1998), pp. 121–144.

    Ünal M. , 'Perturbative oscillation criteria and Hardy-type inequalities ' (1998 ) 189 Math. Nachr. : 121 -144.

    • Search Google Scholar
  • Hasil, P., Conditional oscillation of half-linear differential equations with periodic coefficients, Arch. Math., 44 (2008), no. 2, pp. 119–131.

    Hasil P. , 'Conditional oscillation of half-linear differential equations with periodic coefficients ' (2008 ) 44 Arch. Math. : 119 -131.

    • Search Google Scholar
  • Hasil, P., Mařík, R. and Veselý, M., Conditional oscillation of half-linear differential equations with coefficients having mean values. Abstract Appl. Anal. 2014 (2014), art. ID 258159, pp. 1–14.

    Veselý M. , 'Conditional oscillation of half-linear differential equations with coefficients having mean values ' (2014 ) 2014 Abstract Appl. Anal. : 1 -14.

    • Search Google Scholar
  • Hasil, P. and Veselý, M., Critical oscillation constant for difference equations with almost periodic coefficients, Abstract Appl. Anal., 2012 (2012), art. ID 471435, pp. 1–19.

    Veselý M. , 'Critical oscillation constant for difference equations with almost periodic coefficients ' (2012 ) 2012 Abstract Appl. Anal. : 1 -19.

    • Search Google Scholar
  • Hasil, P. and Veselý, M., Oscillation of half-linear differential equations with asymptotically almost periodic coefficients, Adv. Differ. Equ., 2013 (2013), no. 122, pp. 1–15.

    Veselý M. , 'Oscillation of half-linear differential equations with asymptotically almost periodic coefficients ' (2013 ) 2013 Adv. Differ. Equ. : 1 -15.

    • Search Google Scholar
  • Kneser, A., Untersuchungen über die reellen Nullstellen der Integrale linearer Differentialgleichungen, Math. Ann., 42 (1893), no. 3, pp. 409–435.

    Kneser A. , 'Untersuchungen über die reellen Nullstellen der Integrale linearer Differentialgleichungen ' (1893 ) 42 Math. Ann. : 409 -435.

    • Search Google Scholar
  • Krüger, H., On perturbations of quasiperiodic Schrödinger operators, J. Differ. Equ., 249 (2010), no. 6, pp. 1305–1321.

    Krüger H. , 'On perturbations of quasiperiodic Schrödinger operators ' (2010 ) 249 J. Differ. Equ. : 1305 -1321.

    • Search Google Scholar
  • Krüger, H. and Teschl, G., Effective Prüfer angles and relative oscillation criteria, J. Differ. Equ., 245 (2008), no. 12, pp. 3823–3848.

    Teschl G. , 'Effective Prüfer angles and relative oscillation criteria ' (2008 ) 245 J. Differ. Equ. : 3823 -3848.

    • Search Google Scholar
  • Kusano, T. and Naito, Y., A oscillation and nonoscillation criteria for second order quasilinear differential equations, Acta Math. Hung., 76 (1997), no. 1–2, pp. 81–99.

    Naito Y. , 'A oscillation and nonoscillation criteria for second order quasilinear differential equations ' (1997 ) 76 Acta Math. Hung. : 81 -99.

    • Search Google Scholar
  • Luef, F. and Teschl, G., On the finiteness of the number of eigenvalues of Jacobi operators below the essential spectrum, J. Difference Equ. Appl., 10 (2004), no. 3, pp. 299–307.

    Teschl G. , 'On the finiteness of the number of eigenvalues of Jacobi operators below the essential spectrum ' (2004 ) 10 J. Difference Equ. Appl. : 299 -307.

    • Search Google Scholar
  • Naĭman, P.B., The set of isolated points of increase of the spectral function pertaining to a limit-constant Jacobi matrix, Izv. Vysš. Učebn. Zaved. Matematika, 1959 (1959), no. 1 (8), pp. 129–135.

    Naĭman P.B. , 'The set of isolated points of increase of the spectral function pertaining to a limit-constant Jacobi matrix ' (1959 ) 1959 Izv. Vysš. Učebn. Zaved. Matematika : 129 -135.

    • Search Google Scholar
  • Schmidt, K.M., Critical coupling constant and eigenvalue asymptotics of perturbed periodic Sturm-Liouville operators, Commun Math. Phys., 211 (2000), pp. 465–485.

    Schmidt K.M. , 'Critical coupling constant and eigenvalue asymptotics of perturbed periodic Sturm-Liouville operators ' (2000 ) 211 Commun Math. Phys. : 465 -485.

    • Search Google Scholar
  • Schmidt, K.M., Oscillation of perturbed Hill equation and lower spectrum of radially periodic Schrödinger operators in the plane, Proc. Amer. Math. Soc., 127 (1999), pp. 2367–2374.

    Schmidt K.M. , 'Oscillation of perturbed Hill equation and lower spectrum of radially periodic Schrödinger operators in the plane ' (1999 ) 127 Proc. Amer. Math. Soc. : 2367 -2374.

    • Search Google Scholar
  • Veselý, M., Construction of almost periodic functions with given properties, Electron. J. Differ. Equ., 2011 (2011), no. 29, pp. 1–25.

    Veselý M. , 'Construction of almost periodic functions with given properties ' (2011 ) 2011 Electron. J. Differ. Equ. : 1 -25.

    • Search Google Scholar
  • Veselý, M., Construction of almost periodic sequences with given properties, Electron. J. Differ. Equ., 2008 (2008), no. 126, pp. 1–22.

    Veselý M. , 'Construction of almost periodic sequences with given properties ' (2008 ) 2008 Electron. J. Differ. Equ. : 1 -22.

    • Search Google Scholar
  • Veselý, M. and Hasil, P., Oscillation and non-oscillation of asymptotically almost periodic half-linear difference equations, Abstract Appl. Anal., 2013 (2013), art. ID 432936, pp. 1–12.

    Hasil P. , 'Oscillation and non-oscillation of asymptotically almost periodic half-linear difference equations ' (2013 ) 2013 Abstract Appl. Anal. : 1 -12.

    • Search Google Scholar

Editors in Chief

Gábor SIMONYI (Rényi Institute of Mathematics)
András STIPSICZ (Rényi Institute of Mathematics)
Géza TÓTH (Rényi Institute of Mathematics) 

Managing Editor

Gábor SÁGI (Rényi Institute of Mathematics)

Editorial Board

  • Imre BÁRÁNY (Rényi Institute of Mathematics)
  • Károly BÖRÖCZKY (Rényi Institute of Mathematics and Central European University)
  • Péter CSIKVÁRI (ELTE, Budapest) 
  • Joshua GREENE (Boston College)
  • Penny HAXELL (University of Waterloo)
  • Andreas HOLMSEN (Korea Advanced Institute of Science and Technology)
  • Ron HOLZMAN (Technion, Haifa)
  • Satoru IWATA (University of Tokyo)
  • Tibor JORDÁN (ELTE, Budapest)
  • Roy MESHULAM (Technion, Haifa)
  • Frédéric MEUNIER (École des Ponts ParisTech)
  • Márton NASZÓDI (ELTE, Budapest)
  • Eran NEVO (Hebrew University of Jerusalem)
  • János PACH (Rényi Institute of Mathematics)
  • Péter Pál PACH (BME, Budapest)
  • Andrew SUK (University of California, San Diego)
  • Zoltán SZABÓ (Princeton University)
  • Martin TANCER (Charles University, Prague)
  • Gábor TARDOS (Rényi Institute of Mathematics)
  • Paul WOLLAN (University of Rome "La Sapienza")

STUDIA SCIENTIARUM MATHEMATICARUM HUNGARICA
Gábor Sági
Address: P.O. Box 127, H–1364 Budapest, Hungary
Phone: (36 1) 483 8344 ---- Fax: (36 1) 483 8333
E-mail: smh.studia@renyi.mta.hu

Indexing and Abstracting Services:

  • CompuMath Citation Index
  • Essential Science Indicators
  • Mathematical Reviews
  • Science Citation Index Expanded (SciSearch)
  • SCOPUS
  • Zentralblatt MATH
2020  
Total Cites 536
WoS
Journal
Impact Factor
0,855
Rank by Mathematics 189/330 (Q3)
Impact Factor  
Impact Factor 0,826
without
Journal Self Cites
5 Year 1,703
Impact Factor
Journal  0,68
Citation Indicator  
Rank by Journal  Mathematics 230/470 (Q2)
Citation Indicator   
Citable 32
Items
Total 32
Articles
Total 0
Reviews
Scimago 24
H-index
Scimago 0,307
Journal Rank
Scimago Mathematics (miscellaneous) Q3
Quartile Score  
Scopus 139/130=1,1
Scite Score  
Scopus General Mathematics 204/378 (Q3)
Scite Score Rank  
Scopus 1,069
SNIP  
Days from  85
sumbission  
to acceptance  
Days from  123
acceptance  
to publication  
Acceptance 16%
Rate

2019  
Total Cites
WoS
463
Impact Factor 0,468
Impact Factor
without
Journal Self Cites
0,468
5 Year
Impact Factor
0,413
Immediacy
Index
0,135
Citable
Items
37
Total
Articles
37
Total
Reviews
0
Cited
Half-Life
21,4
Citing
Half-Life
15,5
Eigenfactor
Score
0,00039
Article Influence
Score
0,196
% Articles
in
Citable Items
100,00
Normalized
Eigenfactor
0,04841
Average
IF
Percentile
13,117
Scimago
H-index
23
Scimago
Journal Rank
0,234
Scopus
Scite Score
76/104=0,7
Scopus
Scite Score Rank
General Mathematics 247/368 (Q3)
Scopus
SNIP
0,671
Acceptance
Rate
14%

 

Studia Scientiarum Mathematicarum Hungarica
Publication Model Hybrid
Submission Fee none
Article Processing Charge 900 EUR/article
Printed Color Illustrations 40 EUR (or 10 000 HUF) + VAT / piece
Regional discounts on country of the funding agency World Bank Lower-middle-income economies: 50%
World Bank Low-income economies: 100%
Further Discounts Editorial Board / Advisory Board members: 50%
Corresponding authors, affiliated to an EISZ member institution subscribing to the journal package of Akadémiai Kiadó: 100%
Subscription fee 2021 Online subsscription: 672 EUR / 840 USD
Print + online subscription: 760 EUR / 948 USD
Subscription fee 2022

Online subsscription: 688 EUR / 860 USD
Print + online subscription: 776 EUR / 970 USD

Subscription Information Online subscribers are entitled access to all back issues published by Akadémiai Kiadó for each title for the duration of the subscription, as well as Online First content for the subscribed content.
Purchase per Title Individual articles are sold on the displayed price.

Studia Scientiarum Mathematicarum Hungarica
Language English
French
German
Size B5
Year of
Foundation
1966
Publication
Programme
2021 Volume 58
Volumes
per Year
1
Issues
per Year
4
Founder Magyar Tudományos Akadémia
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 0081-6906 (Print)
ISSN 1588-2896 (Online)