View More View Less
  • 1 Sobolev Institute of Mathematics Novosibirsk Acad. Koptyug Av. 4 630090 Russia
  • | 2 Novosibirsk State University Novosibirsk Pirogov St. 2 630090 Russia
  • | 3 Hungarian Academy of Sciences A. Rényi Institute of Mathematics H-1364 Budapest Pf. 127 Hungary
  • | 4 South Mathematical Institute of the V. S. C. of the Russian Academy of Sciences Vladikavkaz Markus Str. 22 362027 Russia
  • | 5 Freie Universität Berlin Institut für Informatik Takustr. 9 14159 Berlin Germany
Restricted access

Purchase article

USD  $25.00

1 year subscription (Individual Only)

USD  $800.00

We prove the theorem mentioned in the title for ℝn where n ≧ 3. The case of the simplex was known previously. Also the case n = 2 was settled, but there the infimum was some well-defined function of the side lengths. We also consider the cases of spherical and hyperbolic n-spaces. There we give some necessary conditions for the existence of a convex polytope with given facet areas and some partial results about sufficient conditions for the existence of (convex) tetrahedra.

  • Aleksandrov, A. D., Zur Theorie der gemischten Volumina von konvexen Körpern III, Die Erweiterung zweier Lehrsätze Minkowskis über die konvexen Polyeder auf die beliebigen konvexen Körper, Mat. Sb., 3 (1938), 27–46, Russian, with German summary, Zbl18.42402; English translation A. D. Alexandrov Selected Works, Part I, Selected Scientific papers, Edited by Yu. G. Reshetnyak and S. S. Kutateladze, transl. by P. S. V. Naidu, Classics of Soviet Math., 4 Gordon and Breach, Amsterdam, 1996, MR2000a:01035.

    Aleksandrov A. D. , 'Zur Theorie der gemischten Volumina von konvexen Körpern III, Die Erweiterung zweier Lehrsätze Minkowskis über die konvexen Polyeder auf die beliebigen konvexen Körper ' (1938 ) 3 Mat. Sb. : 27 -46.

    • Search Google Scholar
  • Alexandrow, A. D., Die innere Geometrie der konvexen Flächen, Math. Lehrb ücher und Monographien, II. Abteilung: Math. Monographien, 4, Akademie Verlag, Berlin, 1955, MR17,74; English translation A. D. Alexandrov Selected Works, Part II, Intrinsic Geometry of Conves Surfaces, Edited by S. S. Kutateladze, transl. by S. Vakhrameyev, Chapman and Hall/CRC, Boca Raton, FL, 2006, MR 2006h:01014.

    Alexandrow A. D. , '', in Die innere Geometrie der konvexen Flächen , (1955 ) -.

  • Alexandrow, A. D., Konvexe Polyeder, Math. Lehrbücher und Monographien, II. Abteilung: Math. Monographien, 8, Akademie Verlag, Berlin, 1958, MR19,1192; English translation: A. D. Alexandrov Convex polyhedra, transl. by N. S. Dairbekov, S. S. Kutateladze, A. B. Sossinsky, with comments and bibliography by V. A. Zalgaller and appendices by L. A. Shor, Yu. A. Volkov, Springer Monographs in Math., Springer, Berlin, 2005, MR2005j:52002.

    Alexandrow A. D. , '', in Konvexe Polyeder , (1958 ) -.

  • Aleksandrov, V. A., How to crumple a regular tetrahedral packet of milk, so that it could contain more (Russian), Sorosovskij Obrazovatel’nyj Zhurnal, 6 (2000), 121–127. Zbl947.52012.

    Aleksandrov V. A. , 'How to crumple a regular tetrahedral packet of milk, so that it could contain more (Russian) ' (2000 ) 6 Sorosovskij Obrazovatel’nyj Zhurnal : 121 -127.

    • Search Google Scholar
  • Alekseevskij, D. V., Vinberg, E. B. and Solodovnikov, A. S., Geometry of spaces of constant curvature, in: Geometry II (Ed. E. B. Vinberg), Encyclopaedia Math. Sci., 29, 1–138, Springer, Berlin, 1993, MR95b:53042.

    Solodovnikov A. S. , '', in Geometry II , (1993 ) -.

  • Auluck, F. C., The volume of a tetrahedron, the areas of the faces being given, Proc. Indian Acad. Sci., Sect. A, 7 (1938), 279–281, Zbl18.37106. Online access: http://www.ias.ac.in/j_archive/proca/7/4/279-281/viewpage.html

    Auluck F. C. , 'The volume of a tetrahedron, the areas of the faces being given ' (1938 ) 7 Proc. Indian Acad. Sci., Sect. A : 279 -281.

    • Search Google Scholar
  • Baldus, R., Nichteuklidische Geometrie, Hyperbolische Geometrie der Ebene, Vierte Aufl., Bearb. und ergänzt von F. Löbell, Sammlung Göschen, 970/970a, de Gruyter, Berlin, 1964, MR29#3936.

    Baldus R. , '', in Nichteuklidische Geometrie, Hyperbolische Geometrie der Ebene , (1964 ) -.

  • Bleecker, D. D., Volume increasing isometric deformations of convex polyhedra, J. Diff. Geom., 43 (1996), 505–526, MR97g:52035.

    Bleecker D. D. , 'Volume increasing isometric deformations of convex polyhedra ' (1996 ) 43 J. Diff. Geom. : 505 -526.

    • Search Google Scholar
  • Borchardt, C. W., Über die Aufgabe des Maximums, welche der Bestimmung des Tetraeders von grösstem Volumen bei gegebenen Flächeninhalten der Seitenfl ächen für mehr als drei Dimensionen entspricht, Math. Abh. Akad. Wiss. Berlin, 1866, 121–155 = C. W. Borchardts Gesammelte Werke, Verl. G. Leimer, Berlin, 1888, 201–232. Jahr. Fortschr. Math., 20.15.01.

    Borchardt C. W. , '', in Über die Aufgabe des Maximums, welche der Bestimmung des Tetraeders von grösstem Volumen bei gegebenen Flächeninhalten der Seitenfl ächen für mehr als drei Dimensionen entspricht , (1866 ) -.

  • Böröczky, K., Bárány, I., Makai, E., Jr. and Pach, J., Maximal volme enclosed by plates and proof of the chessboard conjecture, Discr. Math., 60 (1986), 101–120, MR87m:52016.

    Pach J. , 'Maximal volme enclosed by plates and proof of the chessboard conjecture ' (1986 ) 60 Discr. Math. : 101 -120.

    • Search Google Scholar
  • Böröczky, K., Kertész, G., and Makai, E., Jr., The minimum area of a simple polygon with given side lengths, Periodica Mathematica Hungarica, 39(1–3) (1999), 33–49, MR2001e:51016.

    Makai E. , 'The minimum area of a simple polygon with given side lengths ' (1999 ) 39 Periodica Mathematica Hungarica : 33 -49.

    • Search Google Scholar
  • Böröczky, K., Jr., Finite packing and covering, Cambride Tracts in Math, 154, Cambridge Univ. Press, Cambridge, 2004, MR2005g:52045.

    Böröczky K. , '', in Finite packing and covering , (2004 ) -.

  • Brass, P., Moser, W. and Pach, J., Research Problems in Discrete Geometry, Springer, New York, NY, 2005, MR2006i:52001.

    Pach J. , '', in Research Problems in Discrete Geometry , (2005 ) -.

  • Brunn, H., Über Ovale und Eiflächen, Inauguraldissertation, München, 1887, Jahr. Fortschr. Math., 19.0615.01.

    Brunn H. , '', in Über Ovale und Eiflächen , (1887 ) -.

  • Buchin, K. and Schulz, A., Inflating the cube by shrinking (video), in: Proc. 23rd ACM Symp. Comput. Geom., Gyeongju, South Korea, June 6–8, 2007, pp. 125–126, ACM Press. Video: http://www.computational-geometry.org/SoCG-videos/socg07video/

    Schulz A. , '', in Proc. 23rd ACM Symp. Comput. Geom. , (2007 ) -.

  • Burago, Ju. D. and Zalgaller, V. A., Isometric piecewise-linear embeddings of two-dimensional manifolds with a polyhedral metric into ℝ3, Algebra i Analiz, 7 (1995) (3), 76–95 (in Russian); English translation in St. Petersburg Math. J., 7 (1996) (3), 369–385, MR96g:53091.

    Zalgaller V. A. , 'Isometric piecewise-linear embeddings of two-dimensional manifolds with a polyhedral metric into ℝ3 ' (1995 ) 7 Algebra i Analiz : 76 -95.

    • Search Google Scholar
  • Buser, P., Geometry and spectra of compact Riemann surfaces, Progress in Mathematics, 106, Birkhäuser, Boston, Mass., 1992, MR93g:58149.

    Buser P. , '', in Progress in Mathematics , (1992 ) -.

  • Coxeter, H. S. M., Non-Euclidean Geometry. 6th ed., Spectrum Series, The Mathematical Association of America, Washington, DC, 1998, MR99c:51002.

    Coxeter H. S. M. , '', in Non-Euclidean Geometry , (1998 ) -.

  • Dunford, N. and Schwartz, J. T., Linear Operators, Vol. 1, General Theory, Pure and Appl. Math., 7, Interscience, New York-London, 1958, MR22#8302.

    Schwartz J. T. , '', in Pure and Appl. Math. , (1958 ) -.

  • Edmonds, A. L., Hajja, M. and Martini, H., Orthocentric simplices and their centers, Results Math., 47 (2005), 266–295, MR2006e:51021.

    Martini H. , 'Orthocentric simplices and their centers ' (2005 ) 47 Results Math. : 266 -295.

  • Fejes Tóth, L., The isepiphan problem for n-hedra, Amer. J. Math., 70 (1948), 174–180, MR9,460.

    Fejes Tóth L. , 'The isepiphan problem for n-hedra ' (1948 ) 70 Amer. J. Math. : 174 -180.

  • Fejes Tóth, L., Reguläre Figuren, Akadémiai Kiadó, Budapest, 1965, MR30#3408; in English Regular Figures, Pergamon Press, Macmillan, New York, 1964, MR29#2705.

    Fejes Tóth L. , '', in Reguläre Figuren , (1965 ) -.

  • Fenchel, W. and Jessen, B., Mengenfunktionen und konvexe Körper, Danske Vid. Selsk., Mat.-Fys. Medd., 16 (1938), 1–31, Zbl18.42401.

    Jessen B. , 'Mengenfunktionen und konvexe Körper ' (1938 ) 16 Danske Vid. Selsk., Mat.-Fys. Medd. : 1 -31.

    • Search Google Scholar
  • Gallagher, P., Ghang, W., Hu, D., Zhone, M., Perpetua, M., Martin, Z. and Waruhiu, S., Surface-area-minimizing n-hedral tiles, Rose-Hulman Undergrad. Math. J., 15 (2014), No. 1, 209–236, MR 3216229.

    Waruhiu S. , 'Surface-area-minimizing n-hedral tiles ' (2014 ) 15 Rose-Hulman Undergrad. Math. J. : 209 -236.

    • Search Google Scholar
  • Gerber, L., The orthocentric simplex as an extreme simplex, Pacific J. Math., 56 (1975), 97–111, MR51#12717.

    Gerber L. , 'The orthocentric simplex as an extreme simplex ' (1975 ) 56 Pacific J. Math. : 97 -111.

    • Search Google Scholar
  • Goldberg, M., The isoperimetric problem for polyhedra, Tôhoku Math. J., 40 (1935), 226–236, Zbl10.41004.

    Goldberg M. , 'The isoperimetric problem for polyhedra ' (1935 ) 40 Tôhoku Math. J. : 226 -236.

    • Search Google Scholar
  • Gritzmann, P., Wills, J. M. and Wrase, D., A new isoperimetric inequality, J. Reine Angew. Math., 379 (1987), 22–30, MR88h:52018.

    Wrase D. , 'A new isoperimetric inequality ' (1987 ) 379 J. Reine Angew. Math. : 22 -30.

  • Haagerup, U. and Munkholm, H. J., Simplices of maximal volume in hyperbolic n-space, Acta Math., 147 (1981), 1–11, MR82j:53116.

    Munkholm H. J. , 'Simplices of maximal volume in hyperbolic n-space ' (1981 ) 147 Acta Math. : 1 -11.

    • Search Google Scholar
  • Hurewicz, W. and Wallman, H., Dimension Theory, Princeton Univ. Press, Princeton, N.J., 1941, MR3,312b.

    Wallman H. , '', in Dimension Theory , (1941 ) -.

  • Iyengar, K. S. K., A note on Narasinga Rao’s problem relating to tetrahedra, Proc. Indian Acad. Sci., Sect. A, 7 (1938), 269–278, Zbl18.37105. Online access: http://www.ias.ac.in/j_archive/proca/7/4/269-278/viewpage.html

    Iyengar K. S. K. , 'A note on Narasinga Rao’s problem relating to tetrahedra ' (1938 ) 7 Proc. Indian Acad. Sci., Sect. A : 269 -278.

    • Search Google Scholar
  • Iyengar, K. S. K. and Iyengar, K. V., On a problem relating to a tetrahedron, Proc. Indian Acad. Sci., Sect. A, 7 (1938), 305–311, Zbl19.07506. Online access: http://www.ias.ac.in/j_archive/proca/7/5/305-311/viewpage.html

    Iyengar K. V. , 'On a problem relating to a tetrahedron ' (1938 ) 7 Proc. Indian Acad. Sci., Sect. A : 305 -311.

    • Search Google Scholar
  • Jaglom, I. M. and Boltjanski, W. G., Konvexe Figuren, Hochschulbücher für Mathematik, 24, VEB Deutscher Verl. Wiss. Berlin, 1956, MR18,146f (MR14,197d); English translation I. M. Jaglom, V. G. Boltjanskiğ, Convex Figures, transl. by P. J. Kelly and L. F. Walton, Rinehart and Winston, New York, 1960, MR23#A1283.

    Boltjanski W. G. , '', in Konvexe Figuren , (1956 ) -.

  • Kazarinoff, N. D., Geometric inequalities, Random House, New York-Toronto, 1961, New Mathematical Library, 4, MR24#A1.

    Kazarinoff N. D. , '', in Geometric inequalities , (1961 ) -.

  • Kryžanovskij, D. A., Isoperimetry: maximum and minimum properties of geometrical figures, 3-rd ed., with the redaction of I. M. Jaglom (in Russian), Fizmatgiz, Moskva, 1959.

    Kryžanovskij D. A. , '', in Isoperimetry: maximum and minimum properties of geometrical figures , (1959 ) -.

  • Lagrange, J. L., Solutions analytiques de quelques problèmes sur les pyramides triangulaires, Nouv. Mém. Acad. Sci. Berlin, 1773, 149–176 = Œuvres compl` etes de Lagrange, Tome 3, Publié par J.-A. Serret, Gauthier-Villars, Paris, 1869, 659–692.

    Lagrange J. L. , '', in Solutions analytiques de quelques problèmes sur les pyramides triangulaires , (1773 ) -.

  • Lengyel, A., Gáspár, Zs. and Tarnai, T., The roundest polyhedra with symmetry constraint, manuscript under preparation.

  • Liebmann, H., Nichteuklidische Geometrie, 3rd ed., de Gruyter, Berlin, 1923, Jahrb. Fortschr. Math., 49.0390.01.

    Liebmann H. , '', in Nichteuklidische Geometrie , (1923 ) -.

  • Milka, A. D., Linear bendings of regular convex polyhedra (Russian, with English, Russian, Ukrainian summaries), Mat. Fiz. Anal. Geom., 1 (1994), 116–130, MR98k:52056.

    Milka A. D. , 'Linear bendings of regular convex polyhedra ' (1994 ) 1 Mat. Fiz. Anal. Geom. : 116 -130.

    • Search Google Scholar
  • Milka, A. D. and Gor’kavyj, V. A., Volume increasing bendings of regular polyhedra (Russian, with English summary), Zb. Pr. Inst. Mat. NAN Ukr., 6 (2009), 152–182, Zbl1199,52007.

    Gor’kavyj V. A. , 'Volume increasing bendings of regular polyhedra ' (2009 ) 6 Zb. Pr. Inst. Mat. NAN Ukr. : 152 -182.

    • Search Google Scholar
  • Milnor, J., Hyperbolic geometry: the first 150 years, Bull. Amer. Math. Soc., New Ser., 6 (1982), 9–24, MR82m:57005.

    Milnor J. , 'Hyperbolic geometry: the first 150 years ' (1982 ) 6 Bull. Amer. Math. Soc., New Ser. : 9 -24.

    • Search Google Scholar
  • Morgan, F., Riemannian Geometry. A Beginner’s Guide, 2nd ed., A. K. Peters, Wellesley, MA, 1998, MR98i:53001.

    Morgan F. , '', in Riemannian Geometry. A Beginner’s Guide , (1998 ) -.

  • Nikonorova, Yu. V., On an isoperimetric problem on the Euclidean plane, Trudy Rubtsovsk. Ind. Inst., 9 (2001), 66–72 (Russian), Zbl1006.51014.

    Nikonorova Yu. V. , 'On an isoperimetric problem on the Euclidean plane ' (2001 ) 9 Trudy Rubtsovsk. Ind. Inst. : 66 -72.

    • Search Google Scholar
  • Olovianishnikoff, S. P., A generalization of Cauchy’s theorem on convex polyhedra, Rec. Math. = Mat. Sbornik N. S., 18 (60) (3), 1946, 441–446 (Russian, with French summary) MR8,169.

    Olovianishnikoff S. P. , 'A generalization of Cauchy’s theorem on convex polyhedra ' (1946 ) 18 Rec. Math. = Mat. Sbornik N. S. : 441 -446.

    • Search Google Scholar
  • Pak, I., Inflating the cube without stretching, Amer. Math. Monthly, 115 (2008) (5), 443–445, MR2009c:52006.

    Pak I. , 'Inflating the cube without stretching ' (2008 ) 115 Amer. Math. Monthly : 443 -445.

  • Perron, O., Nichteuklidische Elementargeometrie der Ebene, Math. Leitfäden, Teubner, Stuttgart, 1962, MR25#2489.

    Perron O. , '', in Nichteuklidische Elementargeometrie der Ebene , (1962 ) -.

  • Pogorelov, A. V., Unique determination of convex surfaces (Russian), Trudy Mat. Inst. i. V. A. Steklova, 29, Izdat. Akad. Nauk SSSR, Moskva-Leningrad, 1949, Zbl41.508.

    Pogorelov A. V. , '', in Unique determination of convex surfaces (Russian) , (1949 ) -.

  • Pogorelov, A. V., Geometric theory of stability of shells (Russian), Modern Problems of Math., Nauka, Moskva, 1966, MR34#3843.

    Pogorelov A. V. , '', in Geometric theory of stability of shells (Russian) , (1966 ) -.

  • Pogorelov, A. V., Geometrical methods in the non-linear theory of elastic shells (Russian), Nauka, Moskva, 1967, MR36#3535.

    Pogorelov A. V. , '', in Geometrical methods in the non-linear theory of elastic shells (Russian) , (1967 ) -.

  • Pogorelov, A. V. and Babenko, V. I., Geometrical methods in the theory of stability of thin shells (a survey), (in Russian, with English, Ukrainian summaries) Prikl. Mekh., 28 (1992) (1), 3–22; English translation: Internat. Appl. Mech., 28 (1992) (1), 1–17, MR93g:73089.

    Babenko V. I. , 'Geometrical methods in the theory of stability of thin shells (a survey) ' (1992 ) 28 Prikl. Mekh. : 3 -22.

    • Search Google Scholar
  • Narasinga Rao, A., The Mathematics Student, June 1937, 5 (2), 90.

    Narasinga Rao A. , '', in The Mathematics Student , (1937 ) -.

  • Sabitov, I. S., Algebraic methods for the solution of polyhedra, Uspekhi Mat. Nauk, 66 (2011) (3) (399), 3–66 (Russian); Transl. in: Russian Math. Surveys, 66 (3) (2011), 445–505, MR2012k:52027.

    Sabitov I. S. , 'Algebraic methods for the solution of polyhedra ' (2011 ) 66 Uspekhi Mat. Nauk : 3 -66.

    • Search Google Scholar
  • Santaló, L. A., Integral Geometry and Geometric Probability, Encyclopedia of Mathematics and its Applications, 1, Addison-Wesley, Reading, Mass. etc., 1976, MR55#6340.

    Santaló L. A. , '', in Integral Geometry and Geometric Probability , (1976 ) -.

  • Schmidt, E., Die Brunn-Minkowskische Ungleichung und ihr Spiegelbild sowie die isoperimetrische Eigenschaft der Kugel in der euklidischen und nichteuklidischen Geometrie I, Math. Nachr., 1 (1948), 81–157, MR10,471d.

    Schmidt E. , 'Die Brunn-Minkowskische Ungleichung und ihr Spiegelbild sowie die isoperimetrische Eigenschaft der Kugel in der euklidischen und nichteuklidischen Geometrie I ' (1948 ) 1 Math. Nachr. : 81 -157.

    • Search Google Scholar
  • Schmidt, E., Die Brunn-Minkowskische Ungleichung und ihr Spiegelbild sowie die isoperimetrische Eigenschaft der Kugel in der euklidischen und nichteuklidischen Geometrie II, Math. Nachr., 2 (1949), 171–244, MR11,534l.

    Schmidt E. , 'Die Brunn-Minkowskische Ungleichung und ihr Spiegelbild sowie die isoperimetrische Eigenschaft der Kugel in der euklidischen und nichteuklidischen Geometrie II ' (1949 ) 2 Math. Nachr. : 171 -244.

    • Search Google Scholar
  • Schneider, R., Convex Bodies: the Brunn-Minkowski Theory, Encyclopedia of Mathematics and its Applications, 44, Cambridge University Press, Cambridge, 1993, MR94d:52007.

    Schneider R. , '', in Convex Bodies: the Brunn-Minkowski Theory , (1993 ) -.

  • Steinitz, E., Polyeder und Raumeinteilungen, Enzyklopädie der Math. Wiss., mit Einschluss ihrer Anwendungen, 3. Band, Geometrie, Teil I, 2, Teubner, Leipzig, 1914–1931, Ch. 12, 1–139.

    Steinitz E. , '', in Polyeder und Raumeinteilungen , (1914 ) -.

  • Tarnai, T., Gáspár, Z. and Lengyel, A., From spherical circle coverings to the roundest polyhedra, Phil. Mag., 93 no-s 31–33 (2013), 3970–3982, DOI: http://dx.doi.org/10.1080/14786435.2013.800652

    Lengyel A. , 'From spherical circle coverings to the roundest polyhedra ' (2013 ) 93 Phil. Mag. : 3970 -3982.

    • Search Google Scholar
  • Tarnai, T., Hincz, K. and Lengyel, A., Volume increasing inextensional deformation of a cube, Proc. Internat. Assoc. for Shell and Spatial Structures (IASS) Symp. 2013, “Beyond the limits of man”, Sept. 23–27, Wrocław Univ. of Techn., Poland, (eds. J. B. Obrȩbski and R. Tarczewski), CD-ROM, Paper ID 1253, 6pp., 2013.

    A L. , '', in Volume increasing inextensional deformation of a cube , (2013 ) -.

  • Tarnai, T., Lengyel, A. and Hincz, K., Volume increasing isometric deformations of a cube, manuscript under preparation.

  • Tarski, A., A decision method for elementary algebra and geometry, 2nd ed., Univ. Calif. Press, Berkeley, Los Angeles, Calif., 1951, MR13,423 (MR10,499).

    Tarski A. , '', in A decision method for elementary algebra and geometry , (1951 ) -.

  • Venkatachaliengar, K., On a problem of the tetrahedron, Proc. Indian Acad. Sci., Sect. A, 7 (1938), 257–260, Zbl18.37107. Online access: http://www.ias.ac.in/j_archive/proca/7/4/257-260/viewpage.html

    Venkatachaliengar K. , 'On a problem of the tetrahedron ' (1938 ) 7 Proc. Indian Acad. Sci., Sect. A : 257 -260.

    • Search Google Scholar
  • Wulff, G., Zur Frage der Geschwindigkeit des Wachstums und der Auflösung der Krystallflächen, Zeitschr. für Krystallographie und Mineralogie, 34 (1901), 449–530.

    Wulff G. , 'Zur Frage der Geschwindigkeit des Wachstums und der Auflösung der Krystallflächen ' (1901 ) 34 Zeitschr. für Krystallographie und Mineralogie : 449 -530.

    • Search Google Scholar

Editors in Chief

Gábor SIMONYI (Rényi Institute of Mathematics)
András STIPSICZ (Rényi Institute of Mathematics)
Géza TÓTH (Rényi Institute of Mathematics) 

Managing Editor

Gábor SÁGI (Rényi Institute of Mathematics)

Editorial Board

  • Imre BÁRÁNY (Rényi Institute of Mathematics)
  • Károly BÖRÖCZKY (Rényi Institute of Mathematics and Central European University)
  • Péter CSIKVÁRI (ELTE, Budapest) 
  • Joshua GREENE (Boston College)
  • Penny HAXELL (University of Waterloo)
  • Andreas HOLMSEN (Korea Advanced Institute of Science and Technology)
  • Ron HOLZMAN (Technion, Haifa)
  • Satoru IWATA (University of Tokyo)
  • Tibor JORDÁN (ELTE, Budapest)
  • Roy MESHULAM (Technion, Haifa)
  • Frédéric MEUNIER (École des Ponts ParisTech)
  • Márton NASZÓDI (ELTE, Budapest)
  • Eran NEVO (Hebrew University of Jerusalem)
  • János PACH (Rényi Institute of Mathematics)
  • Péter Pál PACH (BME, Budapest)
  • Andrew SUK (University of California, San Diego)
  • Zoltán SZABÓ (Princeton University)
  • Martin TANCER (Charles University, Prague)
  • Gábor TARDOS (Rényi Institute of Mathematics)
  • Paul WOLLAN (University of Rome "La Sapienza")

STUDIA SCIENTIARUM MATHEMATICARUM HUNGARICA
Gábor Sági
Address: P.O. Box 127, H–1364 Budapest, Hungary
Phone: (36 1) 483 8344 ---- Fax: (36 1) 483 8333
E-mail: smh.studia@renyi.mta.hu

Indexing and Abstracting Services:

  • CompuMath Citation Index
  • Essential Science Indicators
  • Mathematical Reviews
  • Science Citation Index Expanded (SciSearch)
  • SCOPUS
  • Zentralblatt MATH
2020  
Total Cites 536
WoS
Journal
Impact Factor
0,855
Rank by Mathematics 189/330 (Q3)
Impact Factor  
Impact Factor 0,826
without
Journal Self Cites
5 Year 1,703
Impact Factor
Journal  0,68
Citation Indicator  
Rank by Journal  Mathematics 230/470 (Q2)
Citation Indicator   
Citable 32
Items
Total 32
Articles
Total 0
Reviews
Scimago 24
H-index
Scimago 0,307
Journal Rank
Scimago Mathematics (miscellaneous) Q3
Quartile Score  
Scopus 139/130=1,1
Scite Score  
Scopus General Mathematics 204/378 (Q3)
Scite Score Rank  
Scopus 1,069
SNIP  
Days from  85
submission  
to acceptance  
Days from  123
acceptance  
to publication  
Acceptance 16%
Rate

2019  
Total Cites
WoS
463
Impact Factor 0,468
Impact Factor
without
Journal Self Cites
0,468
5 Year
Impact Factor
0,413
Immediacy
Index
0,135
Citable
Items
37
Total
Articles
37
Total
Reviews
0
Cited
Half-Life
21,4
Citing
Half-Life
15,5
Eigenfactor
Score
0,00039
Article Influence
Score
0,196
% Articles
in
Citable Items
100,00
Normalized
Eigenfactor
0,04841
Average
IF
Percentile
13,117
Scimago
H-index
23
Scimago
Journal Rank
0,234
Scopus
Scite Score
76/104=0,7
Scopus
Scite Score Rank
General Mathematics 247/368 (Q3)
Scopus
SNIP
0,671
Acceptance
Rate
14%

 

Studia Scientiarum Mathematicarum Hungarica
Publication Model Hybrid
Submission Fee none
Article Processing Charge 900 EUR/article
Printed Color Illustrations 40 EUR (or 10 000 HUF) + VAT / piece
Regional discounts on country of the funding agency World Bank Lower-middle-income economies: 50%
World Bank Low-income economies: 100%
Further Discounts Editorial Board / Advisory Board members: 50%
Corresponding authors, affiliated to an EISZ member institution subscribing to the journal package of Akadémiai Kiadó: 100%
Subscription fee 2022

Online subsscription: 688 EUR / 860 USD
Print + online subscription: 776 EUR / 970 USD

Subscription Information Online subscribers are entitled access to all back issues published by Akadémiai Kiadó for each title for the duration of the subscription, as well as Online First content for the subscribed content.
Purchase per Title Individual articles are sold on the displayed price.

Studia Scientiarum Mathematicarum Hungarica
Language English
French
German
Size B5
Year of
Foundation
1966
Volumes
per Year
1
Issues
per Year
4
Founder Magyar Tudományos Akadémia  
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 0081-6906 (Print)
ISSN 1588-2896 (Online)