View More View Less
  • 1 Department of Computeralgebra, Eötvös Loránd University
Restricted access

Purchase article

USD  $25.00

1 year subscription (Individual Only)

USD  $800.00

In this paper we propose a decentralized privacy-preserving system which is able to share sensible data in a way, that only predefined subsets of authorized entities can recover the data after getting an additional alarm message. The protocol uses two main communication channels: a P2P network where the encrypted information is stored, and a smaller private P2P network, which consists of the authorized parties called friend-to-friend network. We describe the communication protocol fulfilling the desired security requirements. The proposed protocol achieves unconditional security. The main cryptographic building blocks of the protocol are symmetric encryption schemes and secret sharing schemes.

  • [1]

    Blakley, G. R. , Safeguarding cryptographic keys, Proceedings of the National Computer Conference, Vol. 48 (1979), pp. 313317.

  • [2]

    Isdal, T. , Piatek, M., Krishnamurthy, A. and Anderson, T., Privacy preserving P2P data sharing with One Swarm,

    • Export Citation
  • [3]

    Kasza, P. , Ligeti, P. and Nagy, Á., On a Secure Distributed Data Sharing System and its Implementation, submitted to Annales Math. Inf.

    • Search Google Scholar
    • Export Citation
  • [4]

    Popescu, B. C. , Crispo, B. and Tanenbaum, A. S., Safe and Private Data Sharing with Turtle: Friends Team-Up and Beat the System, 12th International Workshop on Security Protocols (2004).

    • Search Google Scholar
    • Export Citation
  • [5]

    RetroShare: secure communications with friends available online at

  • [6]

    Shamir, A. , How to share a secret Communications of the ACM, Vol. 22 (1) (1979), pp. 612613.

The author instruction is available in PDF.

Please, download the file from HERE

Manuscript submission: HERE


  • Impact Factor (2019): 0.486
  • Scimago Journal Rank (2019): 0.234
  • SJR Hirsch-Index (2019): 23
  • SJR Quartile Score (2019): Q3 Mathematics (miscellaneous)
  • Impact Factor (2018): 0.309
  • Scimago Journal Rank (2018): 0.253
  • SJR Hirsch-Index (2018): 21
  • SJR Quartile Score (2018): Q3 Mathematics (miscellaneous)

Language: English, French, German

Founded in 1966
Publication: One volume of four issues annually
Publication Programme: 2020. Vol. 57.
Indexing and Abstracting Services:

  • CompuMath Citation Index
  • Mathematical Reviews
  • Referativnyi Zhurnal/li>
  • Research Alert
  • Science Citation Index Expanded (SciSearch)/li>
  • The ISI Alerting Services


Subscribers can access the electronic version of every printed article.

Senior editors

Editor(s)-in-Chief: Pálfy Péter Pál

Managing Editor(s): Sági, Gábor

Editorial Board

  • Biró, András (Number theory)
  • Csáki, Endre (Probability theory and stochastic processes, Statistics)
  • Domokos, Mátyás (Algebra (Ring theory, Invariant theory))
  • Győri, Ervin (Graph and hypergraph theory, Extremal combinatorics, Designs and configurations)
  • O. H. Katona, Gyula (Combinatorics)
  • Márki, László (Algebra (Semigroup theory, Category theory, Ring theory))
  • Némethi, András (Algebraic geometry, Analytic spaces, Analysis on manifolds)
  • Pach, János (Combinatorics, Discrete and computational geometry)
  • Rásonyi, Miklós (Probability theory and stochastic processes, Financial mathematics)
  • Révész, Szilárd Gy. (Analysis (Approximation theory, Potential theory, Harmonic analysis, Functional analysis))
  • Ruzsa, Imre Z. (Number theory)
  • Soukup, Lajos (General topology, Set theory, Model theory, Algebraic logic, Measure and integration)
  • Stipsicz, András (Low dimensional topology and knot theory, Manifolds and cell complexes, Differential topology)
  • Szász, Domokos (Dynamical systems and ergodic theory, Mechanics of particles and systems)
  • Tóth, Géza (Combinatorial geometry)

Gábor Sági
Address: P.O. Box 127, H–1364 Budapest, Hungary
Phone: (36 1) 483 8344 ---- Fax: (36 1) 483 8333