View More View Less
  • 1 Khon Kaen University, Khon Kaen 40002, Thailand
  • 2 Kasetsart University, Bangkok 10900, Thailand
  • 3 CHE, Si Ayutthaya Road, Bangkok 10400, Thailand
Restricted access

Purchase article

USD  $25.00

1 year subscription (Individual Only)

USD  $800.00

A remarkable class of quadratic irrational elements having both explicit Engel series and continued fraction expansions in the field of Laurent series, mimicking the case of real numbers discovered by Sierpiński and later extended by Tamura, is constructed. Linear integer-valued polynomials which can be applied to construct such class are determined. Corresponding results in the case of real numbers are mentioned.

  • [1]

    Knopfmacher, A. and Knopfmacher, J., Series expansions in p-adic and other non-archimedean fields, J. Number Theory, 32 (1989), 297306.

    • Search Google Scholar
    • Export Citation
  • [2]

    Laohakosol, V., Bases for integer-valued polynomials in a Galois field, Acta Arith., LXXXVII.1 (1998), 1326.

  • [3]

    Laohakosol, V. and Ubolsri, P., p-adic continued fractions of Liouville type, Proc. Amer. Math. Soc., 101(3) (1987), 403410.

  • [4]

    Laohakosol, V., Rompurk, N. and Harnchoowong, A., Characterizing rational elements using Knopfmachers’ expansions in the field of Laurent series over a finite field, Thai J. Math., 4 (2006), 223244.

    • Search Google Scholar
    • Export Citation
  • [5]

    Liardet, P. et Stambul, P. , Séries de Engel et fractions continuées, J. Théor. Nombres Bordeaux, 12 (2000), 3768.

  • [6]

    Mahler, K., Zur Approximation p-adischer Irrationalzahlen, Nieuw Arch. Wisk., 18 (1934), 2234.

  • [7]

    Perron, O., Irrationalzahlen, Chelsea, New York, 1951.

  • [8]

    Pólya G. and Szegö, G., Problems and Theorems in Analysis, Volume II, Springer, New York–Heidelberg–Berlin, 1976.

  • [9]

    Ruban, A., Certain metric properties of the p-adic numbers, Sibirsk. Mat. Zh., 11 (1971), 222227; English transl. Siberian Math. J., 11 (1971), 176180.

    • Search Google Scholar
    • Export Citation
  • [10]

    Schmidt, W. M., On continued fractions and diophantin approximation in power series fields, Acta Arith., 95 (2000), 139166.

  • [11]

    Sierpiński, W., Elementary theory of Numbers, North-Holland, Amsterdam–New York–Oxford, 1988.

  • [12]

    Tamura, J., Explicit formulae for Cantor series representing quadratic irrationals, Number Theory and Combinatorics, Japan, World Scientific Publishing Co. (1984), 369381.

    • Search Google Scholar
    • Export Citation