View More View Less
  • 1 Khon Kaen University, Khon Kaen 40002, Thailand
  • 2 Kasetsart University, Bangkok 10900, Thailand
  • 3 CHE, Si Ayutthaya Road, Bangkok 10400, Thailand
Restricted access

Purchase article

USD  $25.00

1 year subscription (Individual Only)

USD  $800.00

A remarkable class of quadratic irrational elements having both explicit Engel series and continued fraction expansions in the field of Laurent series, mimicking the case of real numbers discovered by Sierpiński and later extended by Tamura, is constructed. Linear integer-valued polynomials which can be applied to construct such class are determined. Corresponding results in the case of real numbers are mentioned.

  • [1]

    Knopfmacher, A. and Knopfmacher, J., Series expansions in p-adic and other non-archimedean fields, J. Number Theory, 32 (1989), 297306.

    • Search Google Scholar
    • Export Citation
  • [2]

    Laohakosol, V., Bases for integer-valued polynomials in a Galois field, Acta Arith., LXXXVII.1 (1998), 1326.

  • [3]

    Laohakosol, V. and Ubolsri, P., p-adic continued fractions of Liouville type, Proc. Amer. Math. Soc., 101(3) (1987), 403410.

  • [4]

    Laohakosol, V., Rompurk, N. and Harnchoowong, A., Characterizing rational elements using Knopfmachers’ expansions in the field of Laurent series over a finite field, Thai J. Math., 4 (2006), 223244.

    • Export Citation
  • [5]

    Liardet, P. et Stambul, P. , Séries de Engel et fractions continuées, J. Théor. Nombres Bordeaux, 12 (2000), 3768.

  • [6]

    Mahler, K., Zur Approximation p-adischer Irrationalzahlen, Nieuw Arch. Wisk., 18 (1934), 2234.

  • [7]

    Perron, O., Irrationalzahlen, Chelsea, New York, 1951.

  • [8]

    Pólya G. and Szegö, G., Problems and Theorems in Analysis, Volume II, Springer, New York–Heidelberg–Berlin, 1976.

  • [9]

    Ruban, A., Certain metric properties of the p-adic numbers, Sibirsk. Mat. Zh., 11 (1971), 222227; English transl. Siberian Math. J., 11 (1971), 176180.

    • Search Google Scholar
    • Export Citation
  • [10]

    Schmidt, W. M., On continued fractions and diophantin approximation in power series fields, Acta Arith., 95 (2000), 139166.

  • [11]

    Sierpiński, W., Elementary theory of Numbers, North-Holland, Amsterdam–New York–Oxford, 1988.

  • [12]

    Tamura, J., Explicit formulae for Cantor series representing quadratic irrationals, Number Theory and Combinatorics, Japan, World Scientific Publishing Co. (1984), 369381.

    • Search Google Scholar
    • Export Citation

The author instruction is available in PDF.

Please, download the file from HERE

Manuscript submission: HERE

 

  • Impact Factor (2019): 0.486
  • Scimago Journal Rank (2019): 0.234
  • SJR Hirsch-Index (2019): 23
  • SJR Quartile Score (2019): Q3 Mathematics (miscellaneous)
  • Impact Factor (2018): 0.309
  • Scimago Journal Rank (2018): 0.253
  • SJR Hirsch-Index (2018): 21
  • SJR Quartile Score (2018): Q3 Mathematics (miscellaneous)

Language: English, French, German

Founded in 1966
Publication: One volume of four issues annually
Publication Programme: 2020. Vol. 57.
Indexing and Abstracting Services:

  • CompuMath Citation Index
  • Mathematical Reviews
  • Referativnyi Zhurnal/li>
  • Research Alert
  • Science Citation Index Expanded (SciSearch)/li>
  • SCOPUS
  • The ISI Alerting Services

 

Subscribers can access the electronic version of every printed article.

Senior editors

Editor(s)-in-Chief: Pálfy Péter Pál

Managing Editor(s): Sági, Gábor

Editorial Board

  • Biró, András (Number theory)
  • Csáki, Endre (Probability theory and stochastic processes, Statistics)
  • Domokos, Mátyás (Algebra (Ring theory, Invariant theory))
  • Győri, Ervin (Graph and hypergraph theory, Extremal combinatorics, Designs and configurations)
  • O. H. Katona, Gyula (Combinatorics)
  • Márki, László (Algebra (Semigroup theory, Category theory, Ring theory))
  • Némethi, András (Algebraic geometry, Analytic spaces, Analysis on manifolds)
  • Pach, János (Combinatorics, Discrete and computational geometry)
  • Rásonyi, Miklós (Probability theory and stochastic processes, Financial mathematics)
  • Révész, Szilárd Gy. (Analysis (Approximation theory, Potential theory, Harmonic analysis, Functional analysis))
  • Ruzsa, Imre Z. (Number theory)
  • Soukup, Lajos (General topology, Set theory, Model theory, Algebraic logic, Measure and integration)
  • Stipsicz, András (Low dimensional topology and knot theory, Manifolds and cell complexes, Differential topology)
  • Szász, Domokos (Dynamical systems and ergodic theory, Mechanics of particles and systems)
  • Tóth, Géza (Combinatorial geometry)

STUDIA SCIENTIARUM MATHEMATICARUM HUNGARICA
Gábor Sági
Address: P.O. Box 127, H–1364 Budapest, Hungary
Phone: (36 1) 483 8344 ---- Fax: (36 1) 483 8333
E-mail: smh.studia@renyi.mta.hu