View More View Less
  • 1 Eötvös L. University, Pázmány Péter sétány 1/c., Budapest H-1117, Hungary
Restricted access

Purchase article

USD  $25.00

1 year subscription (Individual Only)

USD  $800.00

An extension of von Neumann’s characterization of essentially selfadjoint operators is given among not necessarily densely defined symmetric operators which are assumed to be closable. Our arguments are of algebraic nature and follow the idea of [1].

  • [1]

    Arens, R., Operational calculus of linear relations, Pacific J. Math., 11 (1961), 923.

  • [2]

    Coddington, E. A., Extension theory of formally normal and symmetric subspaces, Mem. Amer. Math. Soc., 134 (1973).

  • [3]

    Dijksma A. and de Snoo, H. S. V., Self-adjoint extensions of symmetric subspaces, Pacific J. Math., 54 (1974), 71100.

  • [4]

    Kato, T., Perturbation theory for nullity, deficiency and other quantities of linear operators, J. Analyse Math., 6 (1958), 261322.

  • [5]

    Kato, T., Perturbation theory for linear operators, Springer-Verlag, Berlin, second edition, 1976. Grundlehren der Mathematischen Wissenschaften, Band 132.

    • Search Google Scholar
    • Export Citation
  • [6]

    V. Neumann, J., Allgemeine Eigenwerttheorie hermitescher Funktionaloperatoren, Mathematische Annalen, 102 (1930), 49131.

  • [7]

    V. Neumann, J., Über adjungierte Funktionaloperatoren, The Annals of Mathe-matics, 33 (1932), 294310.

  • [8]

    Popovici D. and Sebestyén, Z., On operators which are adjoint to each other, Acta Sci. Math. (Szeged), 80 (2014), 175194.

  • [9]

    Rellich, F., Störungstheorie der Spektralzerlegung. III, Math. Ann., 116 (1939), 555570.

  • [10]

    Sebestyén, Z., On ranges of adjoint operators in Hilbert space, Acta Sci. Math., 46 (1983), 295298.

  • [11]

    Sebestyén, Z. and Stochel, J., Restrictions of positive selfadjoint operators, Acta Sci. Math. (Szeged), 55 (1991), 149154.

  • [12]

    Sebestyén, Z. and Tarcsay, Zs., T*T always has a positive selfadjoint extension, Acta Math. Hungar., 135 (2012), 116129.

  • [13]

    Sebestyén, Z. and Tarcsay, Zs., Characterizations of selfadjoint operators, Studia Sci. Math. Hungar., 50 (2013), 423435.

  • [14]

    Stone, M. H., Linear transformations in Hilbert space, American Mathematical Society Colloquium Publications, 15. (American Mathematical Society, Providence, Rhode Island: 1932.)

    • Search Google Scholar
    • Export Citation
  • [15]

    Weidmann, J., Linear operators in Hilbert spaces, Springer-Verlag, Berlin, Heidelberg, New York, 1980.

The author instruction is available in PDF.

Please, download the file from HERE

Manuscript submission: HERE

 

  • Impact Factor (2019): 0.486
  • Scimago Journal Rank (2019): 0.234
  • SJR Hirsch-Index (2019): 23
  • SJR Quartile Score (2019): Q3 Mathematics (miscellaneous)
  • Impact Factor (2018): 0.309
  • Scimago Journal Rank (2018): 0.253
  • SJR Hirsch-Index (2018): 21
  • SJR Quartile Score (2018): Q3 Mathematics (miscellaneous)

Language: English, French, German

Founded in 1966
Publication: One volume of four issues annually
Publication Programme: 2020. Vol. 57.
Indexing and Abstracting Services:

  • CompuMath Citation Index
  • Mathematical Reviews
  • Referativnyi Zhurnal/li>
  • Research Alert
  • Science Citation Index Expanded (SciSearch)/li>
  • SCOPUS
  • The ISI Alerting Services

 

Subscribers can access the electronic version of every printed article.

Senior editors

Editor(s)-in-Chief: Pálfy Péter Pál

Managing Editor(s): Sági, Gábor

Editorial Board

  • Biró, András (Number theory)
  • Csáki, Endre (Probability theory and stochastic processes, Statistics)
  • Domokos, Mátyás (Algebra (Ring theory, Invariant theory))
  • Győri, Ervin (Graph and hypergraph theory, Extremal combinatorics, Designs and configurations)
  • O. H. Katona, Gyula (Combinatorics)
  • Márki, László (Algebra (Semigroup theory, Category theory, Ring theory))
  • Némethi, András (Algebraic geometry, Analytic spaces, Analysis on manifolds)
  • Pach, János (Combinatorics, Discrete and computational geometry)
  • Rásonyi, Miklós (Probability theory and stochastic processes, Financial mathematics)
  • Révész, Szilárd Gy. (Analysis (Approximation theory, Potential theory, Harmonic analysis, Functional analysis))
  • Ruzsa, Imre Z. (Number theory)
  • Soukup, Lajos (General topology, Set theory, Model theory, Algebraic logic, Measure and integration)
  • Stipsicz, András (Low dimensional topology and knot theory, Manifolds and cell complexes, Differential topology)
  • Szász, Domokos (Dynamical systems and ergodic theory, Mechanics of particles and systems)
  • Tóth, Géza (Combinatorial geometry)

STUDIA SCIENTIARUM MATHEMATICARUM HUNGARICA
Gábor Sági
Address: P.O. Box 127, H–1364 Budapest, Hungary
Phone: (36 1) 483 8344 ---- Fax: (36 1) 483 8333
E-mail: smh.studia@renyi.mta.hu