The Separation Problem, originally posed by K. Bezdek in [1], asks for the minimum number s(O, K) of hyperplanes needed to strictly separate an interior point O in a convex body K from all faces of K. It is conjectured that s(O, K) ≦ 2d in d-dimensional Euclidean space. We prove this conjecture for the class of all totally-sewn neighbourly 4-dimensional polytopes.
Bezdek, K. , The problem of illumination of the boundary of a convex body by affine subspaces, Mathematika, 38 (1991), no. 2, 362–375 (1992).
Bezdek, K. and Bisztriczky, T., Hadwiger’s covering conjecture and low-dimensional dual cyclic polytopes, Geom. Dedicata, 46 (1993), no. 3, 279–286.
Bezdek, K. and Bisztriczky, T., A proof of Hadwiger’s covering conjecture for dual cyclic polytopes, Geom. Dedicata, 68 (1997), no. 1, 29–41.
Bisztriczky, T. , Separation in neighbourly 4-polytopes, Studia Sci. Math. Hungar., 39 (2002), no. 3–4, 277–289.
Bisztriczky, T., Fodor, F. and Oliveros, D., Separation in totally-sewn 4-polytopes with the decreasing universal edge property, Beitäge Algebra Geom., 53 (2012), no. 1, 123–138.
Bisztriczky, T. and Oliveros, D., Separation in totally-sewn 4-polytopes, in: Discrete geometry, Monogr. Textbooks Pure Appl. Math., 253 Dekker (New York, 2003), 59–68.
Boltyanski, V., Martini, H. and Soltan, P. S., Excursions into combinatorial geometry, Universitext, Springer-Verlag (Berlin, 1997), xiv+418.
Finbow, W. and Oliveros, D., Separation in semicyclic 4-polytopes, Bol. Soc. Mat. Mexicana., 8 (2002), no. 3, 63–74.
Grünbaum, B. , Convex polytopes, Graduate Texts in Mathematics, 221, Springer-Verlag (New York, 2003), xvi+468.
Martini, H. and Soltan, V., Combinatorial problems on the illumination of convex bodies, Aequationes Math., 57 (1999), 121–152.
McMullen, P. , The maximum numbers of faces of a convex polytope, Mathematika, 17 (1970), 179–184.
Shemer, I. , Neighborly polytopes, Israel J. Math., 43 (1982), no. 4, 291–314.
Shemer, I. , How many cyclic subpolytopes can a noncyclic polytope have?, Israel J. Math., 49 (1984), no. 4, 331–342.