Authors:
T. Bisztriczky University of Calgary, 2500 University Dr. N.W., Calgary, Alberta, T2N 1N4, Canada

Search for other papers by T. Bisztriczky in
Current site
Google Scholar
PubMed
Close
and
F. Fodor University of Calgary, 2500 University Dr. N.W., Calgary, Alberta, T2N 1N4, Canada
University of Szeged, Aradi vértanúk tere 1, 6720 Szeged, Hungary

Search for other papers by F. Fodor in
Current site
Google Scholar
PubMed
Close
Restricted access

The Separation Problem, originally posed by K. Bezdek in [1], asks for the minimum number s(O, K) of hyperplanes needed to strictly separate an interior point O in a convex body K from all faces of K. It is conjectured that s(O, K) ≦ 2d in d-dimensional Euclidean space. We prove this conjecture for the class of all totally-sewn neighbourly 4-dimensional polytopes.

  • [1]

    Bezdek, K. , The problem of illumination of the boundary of a convex body by affine subspaces, Mathematika, 38 (1991), no. 2, 362375 (1992).

    • Search Google Scholar
    • Export Citation
  • [2]

    Bezdek, K. and Bisztriczky, T., Hadwiger’s covering conjecture and low-dimensional dual cyclic polytopes, Geom. Dedicata, 46 (1993), no. 3, 279286.

    • Search Google Scholar
    • Export Citation
  • [3]

    Bezdek, K. and Bisztriczky, T., A proof of Hadwiger’s covering conjecture for dual cyclic polytopes, Geom. Dedicata, 68 (1997), no. 1, 2941.

    • Search Google Scholar
    • Export Citation
  • [4]

    Bisztriczky, T. , Separation in neighbourly 4-polytopes, Studia Sci. Math. Hungar., 39 (2002), no. 3–4, 277289.

  • [5]

    Bisztriczky, T., Fodor, F. and Oliveros, D., Separation in totally-sewn 4-polytopes with the decreasing universal edge property, Beitäge Algebra Geom., 53 (2012), no. 1, 123138.

    • Search Google Scholar
    • Export Citation
  • [6]

    Bisztriczky, T. and Oliveros, D., Separation in totally-sewn 4-polytopes, in: Discrete geometry, Monogr. Textbooks Pure Appl. Math., 253 Dekker (New York, 2003), 5968.

    • Search Google Scholar
    • Export Citation
  • [7]

    Boltyanski, V., Martini, H. and Soltan, P. S., Excursions into combinatorial geometry, Universitext, Springer-Verlag (Berlin, 1997), xiv+418.

    • Search Google Scholar
    • Export Citation
  • [8]

    Finbow, W. and Oliveros, D., Separation in semicyclic 4-polytopes, Bol. Soc. Mat. Mexicana., 8 (2002), no. 3, 6374.

  • [9]

    Grünbaum, B. , Convex polytopes, Graduate Texts in Mathematics, 221, Springer-Verlag (New York, 2003), xvi+468.

  • [10]

    Martini, H. and Soltan, V., Combinatorial problems on the illumination of convex bodies, Aequationes Math., 57 (1999), 121152.

  • [11]

    McMullen, P. , The maximum numbers of faces of a convex polytope, Mathematika, 17 (1970), 179184.

  • [12]

    Shemer, I. , Neighborly polytopes, Israel J. Math., 43 (1982), no. 4, 291314.

  • [13]

    Shemer, I. , How many cyclic subpolytopes can a noncyclic polytope have?, Israel J. Math., 49 (1984), no. 4, 331342.

  • Collapse
  • Expand

Editors in Chief

Gábor SIMONYI (Rényi Institute of Mathematics)
András STIPSICZ (Rényi Institute of Mathematics)
Géza TÓTH (Rényi Institute of Mathematics) 

Managing Editor

Gábor SÁGI (Rényi Institute of Mathematics)

Editorial Board

  • Imre BÁRÁNY (Rényi Institute of Mathematics)
  • Károly BÖRÖCZKY (Rényi Institute of Mathematics and Central European University)
  • Péter CSIKVÁRI (ELTE, Budapest) 
  • Joshua GREENE (Boston College)
  • Penny HAXELL (University of Waterloo)
  • Andreas HOLMSEN (Korea Advanced Institute of Science and Technology)
  • Ron HOLZMAN (Technion, Haifa)
  • Satoru IWATA (University of Tokyo)
  • Tibor JORDÁN (ELTE, Budapest)
  • Roy MESHULAM (Technion, Haifa)
  • Frédéric MEUNIER (École des Ponts ParisTech)
  • Márton NASZÓDI (ELTE, Budapest)
  • Eran NEVO (Hebrew University of Jerusalem)
  • János PACH (Rényi Institute of Mathematics)
  • Péter Pál PACH (BME, Budapest)
  • Andrew SUK (University of California, San Diego)
  • Zoltán SZABÓ (Princeton University)
  • Martin TANCER (Charles University, Prague)
  • Gábor TARDOS (Rényi Institute of Mathematics)
  • Paul WOLLAN (University of Rome "La Sapienza")

STUDIA SCIENTIARUM MATHEMATICARUM HUNGARICA
Gábor Sági
Address: P.O. Box 127, H–1364 Budapest, Hungary
Phone: (36 1) 483 8344 ---- Fax: (36 1) 483 8333
E-mail: smh.studia@renyi.mta.hu

Indexing and Abstracting Services:

  • CABELLS Journalytics
  • CompuMath Citation Index
  • Essential Science Indicators
  • Mathematical Reviews
  • Science Citation Index Expanded (SciSearch)
  • SCOPUS
  • Zentralblatt MATH

2023  
Web of Science  
Journal Impact Factor 0.4
Rank by Impact Factor Q4 (Mathematics)
Journal Citation Indicator 0.49
Scopus  
CiteScore 1.3
CiteScore rank Q2 (General Mathematics)
SNIP 0.705
Scimago  
SJR index 0.239
SJR Q rank Q3

Studia Scientiarum Mathematicarum Hungarica
Publication Model Hybrid
Submission Fee none
Article Processing Charge 900 EUR/article (only for OA publications)
Printed Color Illustrations 40 EUR (or 10 000 HUF) + VAT / piece
Regional discounts on country of the funding agency World Bank Lower-middle-income economies: 50%
World Bank Low-income economies: 100%
Further Discounts Editorial Board / Advisory Board members: 50%
Corresponding authors, affiliated to an EISZ member institution subscribing to the journal package of Akadémiai Kiadó: 100%
Subscription fee 2025 Online subsscription: 796 EUR / 876 USD
Print + online subscription: 900 EUR / 988 USD
Subscription Information Online subscribers are entitled access to all back issues published by Akadémiai Kiadó for each title for the duration of the subscription, as well as Online First content for the subscribed content.
Purchase per Title Individual articles are sold on the displayed price.

Studia Scientiarum Mathematicarum Hungarica
Language English
French
German
Size B5
Year of
Foundation
1966
Volumes
per Year
1
Issues
per Year
4
Founder Magyar Tudományos Akadémia  
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 0081-6906 (Print)
ISSN 1588-2896 (Online)