View More View Less
  • 1 University of Calgary, 2500 University Dr. N.W., Calgary, Alberta, T2N 1N4, Canada
  • 2 University of Szeged, Aradi vértanúk tere 1, 6720 Szeged, Hungary
Restricted access

Purchase article

USD  $25.00

1 year subscription (Individual Only)

USD  $800.00

The Separation Problem, originally posed by K. Bezdek in [1], asks for the minimum number s(O, K) of hyperplanes needed to strictly separate an interior point O in a convex body K from all faces of K. It is conjectured that s(O, K) ≦ 2d in d-dimensional Euclidean space. We prove this conjecture for the class of all totally-sewn neighbourly 4-dimensional polytopes.

  • [1]

    Bezdek, K., The problem of illumination of the boundary of a convex body by affine subspaces, Mathematika, 38 (1991), no. 2, 362375 (1992).

    • Search Google Scholar
    • Export Citation
  • [2]

    Bezdek, K. and Bisztriczky, T., Hadwiger’s covering conjecture and low-dimensional dual cyclic polytopes, Geom. Dedicata, 46 (1993), no. 3, 279286.

    • Search Google Scholar
    • Export Citation
  • [3]

    Bezdek, K. and Bisztriczky, T., A proof of Hadwiger’s covering conjecture for dual cyclic polytopes, Geom. Dedicata, 68 (1997), no. 1, 2941.

    • Search Google Scholar
    • Export Citation
  • [4]

    Bisztriczky, T., Separation in neighbourly 4-polytopes, Studia Sci. Math. Hungar., 39 (2002), no. 3–4, 277289.

  • [5]

    Bisztriczky, T., Fodor, F. and Oliveros, D., Separation in totally-sewn 4-polytopes with the decreasing universal edge property, Beitäge Algebra Geom., 53 (2012), no. 1, 123138.

    • Search Google Scholar
    • Export Citation
  • [6]

    Bisztriczky, T. and Oliveros, D., Separation in totally-sewn 4-polytopes, in: Discrete geometry, Monogr. Textbooks Pure Appl. Math., 253 Dekker (New York, 2003), 5968.

    • Search Google Scholar
    • Export Citation
  • [7]

    Boltyanski, V., Martini, H. and Soltan, P. S., Excursions into combinatorial geometry, Universitext, Springer-Verlag (Berlin, 1997), xiv+418.

    • Search Google Scholar
    • Export Citation
  • [8]

    Finbow, W. and Oliveros, D., Separation in semicyclic 4-polytopes, Bol. Soc. Mat. Mexicana., 8 (2002), no. 3, 6374.

  • [9]

    Grünbaum, B., Convex polytopes, Graduate Texts in Mathematics, 221, Springer-Verlag (New York, 2003), xvi+468.

  • [10]

    Martini, H. and Soltan, V., Combinatorial problems on the illumination of convex bodies, Aequationes Math., 57 (1999), 121152.

  • [11]

    McMullen, P., The maximum numbers of faces of a convex polytope, Mathematika, 17 (1970), 179184.

  • [12]

    Shemer, I., Neighborly polytopes, Israel J. Math., 43 (1982), no. 4, 291314.

  • [13]

    Shemer, I., How many cyclic subpolytopes can a noncyclic polytope have?, Israel J. Math., 49 (1984), no. 4, 331342.

The author instruction is available in PDF.

Please, download the file from HERE

Manuscript submission: HERE

 

  • Impact Factor (2019): 0.486
  • Scimago Journal Rank (2019): 0.234
  • SJR Hirsch-Index (2019): 23
  • SJR Quartile Score (2019): Q3 Mathematics (miscellaneous)
  • Impact Factor (2018): 0.309
  • Scimago Journal Rank (2018): 0.253
  • SJR Hirsch-Index (2018): 21
  • SJR Quartile Score (2018): Q3 Mathematics (miscellaneous)

Language: English, French, German

Founded in 1966
Publication: One volume of four issues annually
Publication Programme: 2020. Vol. 57.
Indexing and Abstracting Services:

  • CompuMath Citation Index
  • Mathematical Reviews
  • Referativnyi Zhurnal/li>
  • Research Alert
  • Science Citation Index Expanded (SciSearch)/li>
  • SCOPUS
  • The ISI Alerting Services

 

Subscribers can access the electronic version of every printed article.

Senior editors

Editor(s)-in-Chief: Pálfy Péter Pál

Managing Editor(s): Sági, Gábor

Editorial Board

  • Biró, András (Number theory)
  • Csáki, Endre (Probability theory and stochastic processes, Statistics)
  • Domokos, Mátyás (Algebra (Ring theory, Invariant theory))
  • Győri, Ervin (Graph and hypergraph theory, Extremal combinatorics, Designs and configurations)
  • O. H. Katona, Gyula (Combinatorics)
  • Márki, László (Algebra (Semigroup theory, Category theory, Ring theory))
  • Némethi, András (Algebraic geometry, Analytic spaces, Analysis on manifolds)
  • Pach, János (Combinatorics, Discrete and computational geometry)
  • Rásonyi, Miklós (Probability theory and stochastic processes, Financial mathematics)
  • Révész, Szilárd Gy. (Analysis (Approximation theory, Potential theory, Harmonic analysis, Functional analysis))
  • Ruzsa, Imre Z. (Number theory)
  • Soukup, Lajos (General topology, Set theory, Model theory, Algebraic logic, Measure and integration)
  • Stipsicz, András (Low dimensional topology and knot theory, Manifolds and cell complexes, Differential topology)
  • Szász, Domokos (Dynamical systems and ergodic theory, Mechanics of particles and systems)
  • Tóth, Géza (Combinatorial geometry)

STUDIA SCIENTIARUM MATHEMATICARUM HUNGARICA
Gábor Sági
Address: P.O. Box 127, H–1364 Budapest, Hungary
Phone: (36 1) 483 8344 ---- Fax: (36 1) 483 8333
E-mail: smh.studia@renyi.mta.hu