View More View Less
  • 1 University of Gujrat, Gujrat, Pakistan
  • 2 COMSATS Institute of Information Technology, Sahiwal, Pakistan
Restricted access

Purchase article

USD  $25.00

1 year subscription (Individual Only)

USD  $800.00

The set of Cohen-Macaulay monomial ideals with a given radical contains the so-called Cohen-Macaulay modifications. Not all Cohen-Macaulay squarefree monomial ideals admit nontrivial Cohen-Macaulay modifications. We present classes of Cohen-Macaulay squarefree monomial ideals with infinitely many nontrivial Cohen-Macaulay modifications.

  • [1]

    Ahmad, S., Cohen-Macaualy Intersections, Arch. Math. (Basel), 92 (2009), 228236.

  • [2]

    Ahmad, S. and Naeem, M., Cohen-Macaulay monomial ideals with given radical, Journal of Pure and Applied Algebra., Vol. 214, Issue 10, October 2010, Pages 18121817.

    • Search Google Scholar
    • Export Citation
  • [3]

    Bruns, W. and Herzog, J., Cohen Macaulay rings, Revised Edition, Cambridge, 1996.

  • [4]

    Faridi, S., Cohen-Macaulay properties of squarefree monomial ideals, Journal of Combinatorial Theory, Series A., Vol. 109, Issue 2, Feburary 2005, Pages 299329.

    • Search Google Scholar
    • Export Citation
  • [5]

    Faridi, S., Simplicial trees are sequentially Cohen-Macaulay, Journal of Pure and Applied Algebra., Vol. 190, Issues 13, 1 June 2004, Pages 121136.

    • Search Google Scholar
    • Export Citation
  • [6]

    Grothendieck, A., Éléments de géometrie algébrique. IV. Étude locale des schémas et des morphismes de schémas. II. Inst. Hautes Études Sci. Publ. Math., 24 (1965), 231.

    • Search Google Scholar
    • Export Citation
  • [7]

    Herzog, J., Takayama, Y. and Terai, N., On the radical of a monomial ideal, Arch. Math. (Basel), 85(5) (2005), 397408.

  • [8]

    Naeem, M., Cohen-Macaulay monomial ideals of codimension 2, Manuscripta Math., 127 (2008), 533545.

  • [9]

    Takayama, Y., Generalized Cohen-Macaulay monomial ideals, Bull. Math. Soc. Sci. Math. Roumanie, 50(98), no. 2 (2007), pp. 161167.

  • [10]

    Villarreal, R. H., Monomial algebras, Dekker, New York, 2001

  • [11]

    CoCoATeam CoCoA: a system for doing Computations in Commutative Algebra, Available at http://cocoa.dima.unige.it.

The author instruction is available in PDF.

Please, download the file from HERE

Manuscript submission: HERE

 

  • Impact Factor (2019): 0.486
  • Scimago Journal Rank (2019): 0.234
  • SJR Hirsch-Index (2019): 23
  • SJR Quartile Score (2019): Q3 Mathematics (miscellaneous)
  • Impact Factor (2018): 0.309
  • Scimago Journal Rank (2018): 0.253
  • SJR Hirsch-Index (2018): 21
  • SJR Quartile Score (2018): Q3 Mathematics (miscellaneous)

Language: English, French, German

Founded in 1966
Publication: One volume of four issues annually
Publication Programme: 2020. Vol. 57.
Indexing and Abstracting Services:

  • CompuMath Citation Index
  • Mathematical Reviews
  • Referativnyi Zhurnal/li>
  • Research Alert
  • Science Citation Index Expanded (SciSearch)/li>
  • SCOPUS
  • The ISI Alerting Services

 

Subscribers can access the electronic version of every printed article.

Senior editors

Editor(s)-in-Chief: Pálfy Péter Pál

Managing Editor(s): Sági, Gábor

Editorial Board

  • Biró, András (Number theory)
  • Csáki, Endre (Probability theory and stochastic processes, Statistics)
  • Domokos, Mátyás (Algebra (Ring theory, Invariant theory))
  • Győri, Ervin (Graph and hypergraph theory, Extremal combinatorics, Designs and configurations)
  • O. H. Katona, Gyula (Combinatorics)
  • Márki, László (Algebra (Semigroup theory, Category theory, Ring theory))
  • Némethi, András (Algebraic geometry, Analytic spaces, Analysis on manifolds)
  • Pach, János (Combinatorics, Discrete and computational geometry)
  • Rásonyi, Miklós (Probability theory and stochastic processes, Financial mathematics)
  • Révész, Szilárd Gy. (Analysis (Approximation theory, Potential theory, Harmonic analysis, Functional analysis))
  • Ruzsa, Imre Z. (Number theory)
  • Soukup, Lajos (General topology, Set theory, Model theory, Algebraic logic, Measure and integration)
  • Stipsicz, András (Low dimensional topology and knot theory, Manifolds and cell complexes, Differential topology)
  • Szász, Domokos (Dynamical systems and ergodic theory, Mechanics of particles and systems)
  • Tóth, Géza (Combinatorial geometry)

STUDIA SCIENTIARUM MATHEMATICARUM HUNGARICA
Gábor Sági
Address: P.O. Box 127, H–1364 Budapest, Hungary
Phone: (36 1) 483 8344 ---- Fax: (36 1) 483 8333
E-mail: smh.studia@renyi.mta.hu