View More View Less
  • 1 University of Bielsko-Biała, Ul. Willowa 2, 43–309 Bielsko-Biała, Poland
Restricted access

Purchase article

USD  $25.00

1 year subscription (Individual Only)

USD  $800.00

A semigroup is called eventually regular if each of its elements has a regular power. In this paper we study certain fundamental congruences on an eventually regular semigroup. We generalize some results of Howie and Lallement (1966) and LaTorre (1983). In particular, we give a full description of the semilattice of group congruences (together with the least such a congruence) on an arbitrary eventually regular (orthodox) semigroup. Moreover, we investigate UBG-congruences on an eventually regular semigroup. Finally, we study the eventually regular subdirect products of an E-unitary semigroup and a Clifford semigroup.

  • [1]

    Ćiric, M. and Bogdanowić, S., Sturdy bands of semigroups, Collect. Math., 41 (1980), 189195.

  • [2]

    Edwards, P. M., Eventually regular semigroups, Bull. Austral. Math. Soc., 28 (1983), 2338.

  • [3]

    Edwards, P. M., Maximizing a congruence with respect to its partition of idempotents, Semigroup Forum, 39 (1985), 313317.

  • [4]

    Edwards, P. M., On the lattice of congruences on an eventually regular semigroup, J. Austral. Math. Soc., 38A (1985), 281286.

  • [5]

    Edwards, P. M., Congruences and Green’s relations on eventually regular semigroups, J. Austral. Math. Soc., 43A (1987), 6469.

  • [6]

    Edwards, P. M., Fundamental semigroups, Proc. Roy. Soc. Edinburgh, 99A (1985), 313317.

  • [7]

    Easdown, D., Biorder-preserving coextensions of fundamental semigroups, Proc. Edinburgh Math. Soc., 31 (1988), 463467.

  • [8]

    Gigoń, R. S., Congruences and group congruences on a semigroup, Semigroup Forum, 86 (2013), 431450.

  • [9]

    Gigoń, R. S., Clifford congruences on an idempotent-surjective R-semigroup, Quasigroups Relat. Syst., 20 (2012), 219232.

  • [10]

    Gigon, R. S., On the lattice of congruences on idempotent-regular-surjective semigroups, Commun. Algebra, 42 (2014), 306324.

  • [11]

    Hall, T. E., On regular semigroups, J. Algebra, 24 (1973), 124.

  • [12]

    Hanumntha Rao, S. and Lakshmi, P., The least semilattice of groups congruence on an eventually regular semigroup, Semigroup Forum, 42 (1991), 107111.

    • Search Google Scholar
    • Export Citation
  • [13]

    Howie, J. M., An Introduction to Semigroup Theory, Academic Press, London (1984).

  • [14]

    Howie, J. M., Fundamentals of Semigroup Theory, Oxford University Press, New York (1995).

  • [15]

    Howie, J. M. and Lallement, G., Certain fundamental congruences on a regular semigroup, Proc. Glasgow Math. Soc., 7 (1966), 145159.

  • [16]

    Jones, P. R., Tian, Z. J. and Xu, Z. B., On the lattice of full eventually regular subsemigroups, Comm. Algebra, 33 (2005), 25872600.

    • Search Google Scholar
    • Export Citation
  • [17]

    LaTorre, D. R., The least semilattice of groups congruence on a regular semigroup, Semigroup Forum, 27 (1983), 319329.

  • [18]

    Mitsch, H., A natural partial order for semigroups, Proc. Amer. Math. Soc., 97 (1986), 384388.

  • [19]

    Mitsch, H. and Petrich, M., Basic properties on E-inversive semigroups, Comm. Algebra, 28 (2000), 51695182.

  • [20]

    Mitsch, H. and Petrich, M., Restricting idempotents in E-inversive semigroups, Acta Sci. Math. (Szeged), 67 (2001), 555570.

  • [21]

    Petrich, M., Inverse Semigroups, Wiley, New York (1984).

  • [22]

    Tamura, T., Note of the greatest semilattice decomposition of semigroups, Semi-group Forum, 4 (1972), 255261.

The author instruction is available in PDF.

Please, download the file from HERE

Manuscript submission: HERE

 

  • Impact Factor (2019): 0.486
  • Scimago Journal Rank (2019): 0.234
  • SJR Hirsch-Index (2019): 23
  • SJR Quartile Score (2019): Q3 Mathematics (miscellaneous)
  • Impact Factor (2018): 0.309
  • Scimago Journal Rank (2018): 0.253
  • SJR Hirsch-Index (2018): 21
  • SJR Quartile Score (2018): Q3 Mathematics (miscellaneous)

Language: English, French, German

Founded in 1966
Publication: One volume of four issues annually
Publication Programme: 2020. Vol. 57.
Indexing and Abstracting Services:

  • CompuMath Citation Index
  • Mathematical Reviews
  • Referativnyi Zhurnal/li>
  • Research Alert
  • Science Citation Index Expanded (SciSearch)/li>
  • SCOPUS
  • The ISI Alerting Services

 

Subscribers can access the electronic version of every printed article.

Senior editors

Editor(s)-in-Chief: Pálfy Péter Pál

Managing Editor(s): Sági, Gábor

Editorial Board

  • Biró, András (Number theory)
  • Csáki, Endre (Probability theory and stochastic processes, Statistics)
  • Domokos, Mátyás (Algebra (Ring theory, Invariant theory))
  • Győri, Ervin (Graph and hypergraph theory, Extremal combinatorics, Designs and configurations)
  • O. H. Katona, Gyula (Combinatorics)
  • Márki, László (Algebra (Semigroup theory, Category theory, Ring theory))
  • Némethi, András (Algebraic geometry, Analytic spaces, Analysis on manifolds)
  • Pach, János (Combinatorics, Discrete and computational geometry)
  • Rásonyi, Miklós (Probability theory and stochastic processes, Financial mathematics)
  • Révész, Szilárd Gy. (Analysis (Approximation theory, Potential theory, Harmonic analysis, Functional analysis))
  • Ruzsa, Imre Z. (Number theory)
  • Soukup, Lajos (General topology, Set theory, Model theory, Algebraic logic, Measure and integration)
  • Stipsicz, András (Low dimensional topology and knot theory, Manifolds and cell complexes, Differential topology)
  • Szász, Domokos (Dynamical systems and ergodic theory, Mechanics of particles and systems)
  • Tóth, Géza (Combinatorial geometry)

STUDIA SCIENTIARUM MATHEMATICARUM HUNGARICA
Gábor Sági
Address: P.O. Box 127, H–1364 Budapest, Hungary
Phone: (36 1) 483 8344 ---- Fax: (36 1) 483 8333
E-mail: smh.studia@renyi.mta.hu