Authors:
Gábor Domokos Budapest University of Technology, Müegyetem rakpart 1-3., Budapest 1111, Hungary

Search for other papers by Gábor Domokos in
Current site
Google Scholar
PubMed
Close
and
Zsolt Lángi Budapest University of Technology and Economics, Budapest, Egry József u. 1., 1111, Hungary

Search for other papers by Zsolt Lángi in
Current site
Google Scholar
PubMed
Close
Restricted access

In 1944, Santaló asked about the average number of normals through a point of a given convex body. Since then, numerous results appeared in the literature about this problem. The aim of this paper is to add to this list some new, recent developments. We point out connections of the problem to static equilibria of rigid bodies as well as to geometric partial differential equations of surface evolution.

  • [1]

    Heath, T. I. (ed.), The Works of Archimedes, Cambridge University Press, Cambridge, 1897.

  • [2]

    Blaschke, W. , Kreis und Kugel, Auflage, Berlin, 1956.

  • [3]

    Bloore, F. J. , The Shape of Pebbles, Math. Geology, 9 (1977), 113122.

  • [4]

    Bonnesen, T. and Fenchel, W., Theorie der konvexen Körper, Springer-Verlag, Berlin, 1934.

  • [5]

    Callahan, K. and Hann, K., An Euler-type volume identity, Bull. Austral. Math. Soc., 59 (1999), 495508.

  • [6]

    Chakerian, G. D. , Sets of constant width, Pacific J. Math., 19 (1966), 1321.

  • [7]

    Chakerian, G. D. , The number of diameters through a point inside an oval, Riv. Unión Argentina, 29 (1984), 282290.

  • [8]

    Chow, B. , On Harnack’s inequality and entropy for the Gaussian curvature flow, Comm. Pure Appl. Math., XLIV (1991), 469483.

  • [9]

    Damon, J. , Local Morse theory for solutions to the heat equation and Gaussian blurring, J. Differential Equations, 115 (1995), 368401.

    • Search Google Scholar
    • Export Citation
  • [10]

    Dawson, R. , Monostatic simplexes, Amer. Math. Monthly, 92 (1985), 54146.

  • [11]

    Dawson, R., Finbow, W. and Mak, P., Monostatic simplexes. II, Geom. Dedicata, 70 (1998), 209219.

  • [12]

    Dawson, R. and Finbow, W., What shape is a loaded die?, Math. Intelligencer, 22 (1999), 3237.

  • [13]

    Domokos, G. and Gibbons, G. W., The evolution of pebble shape in space and time, Proc. R. Soc. London A (2012), DOI:10.1098/rspa.2011.0562.

    • Search Google Scholar
    • Export Citation
  • [14]

    Domokos, G. and Lángi, Z., The robustness of equilibria on convex solids, Mathematika, 40 (2014), 237256.

  • [15]

    Domokos, G., Lángi, Z. and Szabó, T., On the equilibria of finely discretized curves and surfaces, Monatsh. Math., 168 (2012), 321345.

    • Search Google Scholar
    • Export Citation
  • [16]

    Domokos, G., Sipos, A. Á. and Várkonyi, P. L., Continuous and discrete models for abrasion processes, Per. Pol. Architecture, 40 (2009), 38., doi:10.3311/pp.ar.2009-1.01.

    • Search Google Scholar
    • Export Citation
  • [17]

    Domokos, G., Sipos, A. Á., Szabó, T. and Várkonyi, P. L., Pebbles, shapes and equilibria, Math. Geosci., 42 (2010), 2947.

  • [18]

    Domokos, G. and Várkonyi, P. L., Geometry and self-righting of turtles, Proc. R. Soc. London B., 275(1630) (2008), 1117.

  • [19]

    Dumitraşcu, S. , Every convex polygon is swept by its inner normal more than 4 times (English summary), An. Univ. Timişoara Ser. Mat.-Inform., 36 (1998), 4358.

    • Search Google Scholar
    • Export Citation
  • [20]

    Firey, W. J. , The shape of worn stones, Mathematika, 21(1974) 111.

  • [21]

    Federer, H. , Geometric Measure Theory, Springer-Verlag, Berlin, Heidelberg, New York, 1969.

  • [22]

    Gage, M. , An isoperimetric inequality with applications to curve shortening, Duke Math. J., 50 (1983), 12251229.

  • [23]

    Ghomi, M. , The problem of optimal smoothing for convex functions, Proc. Amer. Math. Soc., 130 (2002), 22552259.

  • [24]

    Grayson, M. A. , The heat equation shrinks embedded plane curves to round points, J. Differential Geom., 26 (1987), 285314.

  • [25]

    Hammer, P. C. , Convex bodies associated with a convex body, Proc. Amer. Math. Soc., 2 (1951), 781793.

  • [26]

    Hann, K. , The average number of normals through a point in a convex body and a related Euler-type identity, Geom. Dedicata, 48 (1993), 2755.

    • Search Google Scholar
    • Export Citation
  • [27]

    Hann, K. , What’s the bound on the average number of normals?, Amer. Math.Monthly, 103 (1996), 897900.

  • [28]

    Hann, K. , Normals in a Minkowski plane, Geom. Dedicata, 64 (1997), 355364.

  • [29]

    Hann, K. , Minkowski normals for polycircles, Geom. Dedicata, 75 (1999), 5765.

  • [30]

    Heppes, A. , A double-tipping tetrahedron, SIAM Rev., 9 (1967), 599600.

  • [31]

    Huisken, G. , Asymptotic behavior for singularities of the mean curvature flow, J. Differential Geom., 31 (1990), 285299.

  • [32]

    Hug, D. , On the mean number of normals through a point in the interior of a convex body, Geom. Dedicata, 55 (1995), 319340.

  • [33]

    Kawohl, B. and Weber, C., Meissner’s Mysterious Bodies, Math. Intelligencer, 33(3) (2011), 94101.

  • [34]

    Krapivsky, P. L. and Redner, S., Smoothing a rock by chipping, Phys. Rev. E, 9 (2007), 75(3 Pt 1):031119.

  • [35]

    Krynine, P. D. , On the Antiquity of “Sedimentation” and Hydrology, GSA Bulletin, 71 (1960), 17211726.

  • [36]

    Martini, H. and Swanepoel, K. J., The geometry of Minkowski spaces – a survey. Part II, Expo. Math., 22 (2004), 93144.

  • [37]

    McMullen, P. , On zonotopes, Trans. Amer. Math. Soc., 159 (1971), 91109.

  • [38]

    Poston, T. and Stewart, I., Catastrophe Theory and Its Applications, Dover Publications, Inc., Mineola, New York, 1996.

  • [39]

    Lord Rayleigh, Pebbles, natural and artificial. Their shape under various conditions of abrasion, Proc. R. Soc. London A, 181 (1942), 107118.

    • Search Google Scholar
    • Export Citation
  • [40]

    Rogers, C. A. and Shephard, G. C., The difference body of a convex body, Arch. Math., 8 (1957), 220233.

  • [41]

    Santaló, L. A. , Note on convex spherical curves, Bull. Amer. Math. Soc., 50 (1944), 528534.

  • [42]

    Spivak, M. , A Comprehensive Introduction to Differential Geometry, Publish or Perish, Inc., Houston, Texas, 1999.

  • Collapse
  • Expand

Editors in Chief

Gábor SIMONYI (Rényi Institute of Mathematics)
András STIPSICZ (Rényi Institute of Mathematics)
Géza TÓTH (Rényi Institute of Mathematics) 

Managing Editor

Gábor SÁGI (Rényi Institute of Mathematics)

Editorial Board

  • Imre BÁRÁNY (Rényi Institute of Mathematics)
  • Károly BÖRÖCZKY (Rényi Institute of Mathematics and Central European University)
  • Péter CSIKVÁRI (ELTE, Budapest) 
  • Joshua GREENE (Boston College)
  • Penny HAXELL (University of Waterloo)
  • Andreas HOLMSEN (Korea Advanced Institute of Science and Technology)
  • Ron HOLZMAN (Technion, Haifa)
  • Satoru IWATA (University of Tokyo)
  • Tibor JORDÁN (ELTE, Budapest)
  • Roy MESHULAM (Technion, Haifa)
  • Frédéric MEUNIER (École des Ponts ParisTech)
  • Márton NASZÓDI (ELTE, Budapest)
  • Eran NEVO (Hebrew University of Jerusalem)
  • János PACH (Rényi Institute of Mathematics)
  • Péter Pál PACH (BME, Budapest)
  • Andrew SUK (University of California, San Diego)
  • Zoltán SZABÓ (Princeton University)
  • Martin TANCER (Charles University, Prague)
  • Gábor TARDOS (Rényi Institute of Mathematics)
  • Paul WOLLAN (University of Rome "La Sapienza")

STUDIA SCIENTIARUM MATHEMATICARUM HUNGARICA
Gábor Sági
Address: P.O. Box 127, H–1364 Budapest, Hungary
Phone: (36 1) 483 8344 ---- Fax: (36 1) 483 8333
E-mail: smh.studia@renyi.mta.hu

Indexing and Abstracting Services:

  • CABELLS Journalytics
  • CompuMath Citation Index
  • Essential Science Indicators
  • Mathematical Reviews
  • Science Citation Index Expanded (SciSearch)
  • SCOPUS
  • Zentralblatt MATH

2023  
Web of Science  
Journal Impact Factor 0.4
Rank by Impact Factor Q4 (Mathematics)
Journal Citation Indicator 0.49
Scopus  
CiteScore 1.3
CiteScore rank Q2 (General Mathematics)
SNIP 0.705
Scimago  
SJR index 0.239
SJR Q rank Q3

Studia Scientiarum Mathematicarum Hungarica
Publication Model Hybrid
Submission Fee none
Article Processing Charge 900 EUR/article (only for OA publications)
Printed Color Illustrations 40 EUR (or 10 000 HUF) + VAT / piece
Regional discounts on country of the funding agency World Bank Lower-middle-income economies: 50%
World Bank Low-income economies: 100%
Further Discounts Editorial Board / Advisory Board members: 50%
Corresponding authors, affiliated to an EISZ member institution subscribing to the journal package of Akadémiai Kiadó: 100%
Subscription fee 2025 Online subsscription: 796 EUR / 876 USD
Print + online subscription: 900 EUR / 988 USD
Subscription Information Online subscribers are entitled access to all back issues published by Akadémiai Kiadó for each title for the duration of the subscription, as well as Online First content for the subscribed content.
Purchase per Title Individual articles are sold on the displayed price.

Studia Scientiarum Mathematicarum Hungarica
Language English
French
German
Size B5
Year of
Foundation
1966
Volumes
per Year
1
Issues
per Year
4
Founder Magyar Tudományos Akadémia  
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 0081-6906 (Print)
ISSN 1588-2896 (Online)