View More View Less
  • 1 Budapest University of Technology, Müegyetem rakpart 1-3., Budapest 1111, Hungary
  • 2 Budapest University of Technology and Economics, Budapest, Egry József u. 1., 1111, Hungary
Restricted access

Purchase article

USD  $25.00

1 year subscription (Individual Only)

USD  $800.00

In 1944, Santaló asked about the average number of normals through a point of a given convex body. Since then, numerous results appeared in the literature about this problem. The aim of this paper is to add to this list some new, recent developments. We point out connections of the problem to static equilibria of rigid bodies as well as to geometric partial differential equations of surface evolution.

  • [1]

    Heath, T. I. (ed.), The Works of Archimedes, Cambridge University Press, Cambridge, 1897.

  • [2]

    Blaschke, W., Kreis und Kugel, Auflage, Berlin, 1956.

  • [3]

    Bloore, F. J., The Shape of Pebbles, Math. Geology, 9 (1977), 113122.

  • [4]

    Bonnesen, T. and Fenchel, W., Theorie der konvexen Körper, Springer-Verlag, Berlin, 1934.

  • [5]

    Callahan, K. and Hann, K., An Euler-type volume identity, Bull. Austral. Math. Soc., 59 (1999), 495508.

  • [6]

    Chakerian, G. D., Sets of constant width, Pacific J. Math., 19 (1966), 1321.

  • [7]

    Chakerian, G. D., The number of diameters through a point inside an oval, Riv. Unión Argentina, 29 (1984), 282290.

  • [8]

    Chow, B., On Harnack’s inequality and entropy for the Gaussian curvature flow, Comm. Pure Appl. Math., XLIV (1991), 469483.

  • [9]

    Damon, J., Local Morse theory for solutions to the heat equation and Gaussian blurring, J. Differential Equations, 115 (1995), 368401.

    • Search Google Scholar
    • Export Citation
  • [10]

    Dawson, R., Monostatic simplexes, Amer. Math. Monthly, 92 (1985), 54146.

  • [11]

    Dawson, R., Finbow, W. and Mak, P., Monostatic simplexes. II, Geom. Dedicata, 70 (1998), 209219.

  • [12]

    Dawson, R. and Finbow, W., What shape is a loaded die?, Math. Intelligencer, 22 (1999), 3237.

  • [13]

    Domokos, G. and Gibbons, G. W., The evolution of pebble shape in space and time, Proc. R. Soc. London A (2012), DOI:10.1098/rspa.2011.0562.

    • Search Google Scholar
    • Export Citation
  • [14]

    Domokos, G. and Lángi, Z., The robustness of equilibria on convex solids, Mathematika, 40 (2014), 237256.

  • [15]

    Domokos, G., Lángi, Z. and Szabó, T., On the equilibria of finely discretized curves and surfaces, Monatsh. Math., 168 (2012), 321345.

    • Search Google Scholar
    • Export Citation
  • [16]

    Domokos, G., Sipos, A. Á. and Várkonyi, P. L., Continuous and discrete models for abrasion processes, Per. Pol. Architecture, 40 (2009), 38., doi:10.3311/pp.ar.2009-1.01.

    • Search Google Scholar
    • Export Citation
  • [17]

    Domokos, G., Sipos, A. Á., Szabó, T. and Várkonyi, P. L., Pebbles, shapes and equilibria, Math. Geosci., 42 (2010), 2947.

  • [18]

    Domokos, G. and Várkonyi, P. L., Geometry and self-righting of turtles, Proc. R. Soc. London B., 275(1630) (2008), 1117.

  • [19]

    Dumitraşcu, S., Every convex polygon is swept by its inner normal more than 4 times (English summary), An. Univ. Timişoara Ser. Mat.-Inform., 36 (1998), 4358.

    • Search Google Scholar
    • Export Citation
  • [20]

    Firey, W. J., The shape of worn stones, Mathematika, 21(1974) 111.

  • [21]

    Federer, H., Geometric Measure Theory, Springer-Verlag, Berlin, Heidelberg, New York, 1969.

  • [22]

    Gage, M., An isoperimetric inequality with applications to curve shortening, Duke Math. J., 50 (1983), 12251229.

  • [23]

    Ghomi, M., The problem of optimal smoothing for convex functions, Proc. Amer. Math. Soc., 130 (2002), 22552259.

  • [24]

    Grayson, M. A., The heat equation shrinks embedded plane curves to round points, J. Differential Geom., 26 (1987), 285314.

  • [25]

    Hammer, P. C., Convex bodies associated with a convex body, Proc. Amer. Math. Soc., 2 (1951), 781793.

  • [26]

    Hann, K., The average number of normals through a point in a convex body and a related Euler-type identity, Geom. Dedicata, 48 (1993), 2755.

    • Search Google Scholar
    • Export Citation
  • [27]

    Hann, K., What’s the bound on the average number of normals?, Amer. Math.Monthly, 103 (1996), 897900.

  • [28]

    Hann, K., Normals in a Minkowski plane, Geom. Dedicata, 64 (1997), 355364.

  • [29]

    Hann, K., Minkowski normals for polycircles, Geom. Dedicata, 75 (1999), 5765.

  • [30]

    Heppes, A., A double-tipping tetrahedron, SIAM Rev., 9 (1967), 599600.

  • [31]

    Huisken, G., Asymptotic behavior for singularities of the mean curvature flow, J. Differential Geom., 31 (1990), 285299.

  • [32]

    Hug, D., On the mean number of normals through a point in the interior of a convex body, Geom. Dedicata, 55 (1995), 319340.

  • [33]

    Kawohl, B. and Weber, C., Meissner’s Mysterious Bodies, Math. Intelligencer, 33(3) (2011), 94101.

  • [34]

    Krapivsky, P. L. and Redner, S., Smoothing a rock by chipping, Phys. Rev. E, 9 (2007), 75(3 Pt 1):031119.

  • [35]

    Krynine, P. D., On the Antiquity of “Sedimentation” and Hydrology, GSA Bulletin, 71 (1960), 17211726.

  • [36]

    Martini, H. and Swanepoel, K. J., The geometry of Minkowski spaces – a survey. Part II, Expo. Math., 22 (2004), 93144.

  • [37]

    McMullen, P., On zonotopes, Trans. Amer. Math. Soc., 159 (1971), 91109.

  • [38]

    Poston, T. and Stewart, I., Catastrophe Theory and Its Applications, Dover Publications, Inc., Mineola, New York, 1996.

  • [39]

    Lord Rayleigh, Pebbles, natural and artificial. Their shape under various conditions of abrasion, Proc. R. Soc. London A, 181 (1942), 107118.

    • Search Google Scholar
    • Export Citation
  • [40]

    Rogers, C. A. and Shephard, G. C., The difference body of a convex body, Arch. Math., 8 (1957), 220233.

  • [41]

    Santaló, L. A., Note on convex spherical curves, Bull. Amer. Math. Soc., 50 (1944), 528534.

  • [42]

    Spivak, M., A Comprehensive Introduction to Differential Geometry, Publish or Perish, Inc., Houston, Texas, 1999.

The author instruction is available in PDF.

Please, download the file from HERE

Manuscript submission: HERE

 

  • Impact Factor (2019): 0.486
  • Scimago Journal Rank (2019): 0.234
  • SJR Hirsch-Index (2019): 23
  • SJR Quartile Score (2019): Q3 Mathematics (miscellaneous)
  • Impact Factor (2018): 0.309
  • Scimago Journal Rank (2018): 0.253
  • SJR Hirsch-Index (2018): 21
  • SJR Quartile Score (2018): Q3 Mathematics (miscellaneous)

Language: English, French, German

Founded in 1966
Publication: One volume of four issues annually
Publication Programme: 2020. Vol. 57.
Indexing and Abstracting Services:

  • CompuMath Citation Index
  • Mathematical Reviews
  • Referativnyi Zhurnal/li>
  • Research Alert
  • Science Citation Index Expanded (SciSearch)/li>
  • SCOPUS
  • The ISI Alerting Services

 

Subscribers can access the electronic version of every printed article.

Senior editors

Editor(s)-in-Chief: Pálfy Péter Pál

Managing Editor(s): Sági, Gábor

Editorial Board

  • Biró, András (Number theory)
  • Csáki, Endre (Probability theory and stochastic processes, Statistics)
  • Domokos, Mátyás (Algebra (Ring theory, Invariant theory))
  • Győri, Ervin (Graph and hypergraph theory, Extremal combinatorics, Designs and configurations)
  • O. H. Katona, Gyula (Combinatorics)
  • Márki, László (Algebra (Semigroup theory, Category theory, Ring theory))
  • Némethi, András (Algebraic geometry, Analytic spaces, Analysis on manifolds)
  • Pach, János (Combinatorics, Discrete and computational geometry)
  • Rásonyi, Miklós (Probability theory and stochastic processes, Financial mathematics)
  • Révész, Szilárd Gy. (Analysis (Approximation theory, Potential theory, Harmonic analysis, Functional analysis))
  • Ruzsa, Imre Z. (Number theory)
  • Soukup, Lajos (General topology, Set theory, Model theory, Algebraic logic, Measure and integration)
  • Stipsicz, András (Low dimensional topology and knot theory, Manifolds and cell complexes, Differential topology)
  • Szász, Domokos (Dynamical systems and ergodic theory, Mechanics of particles and systems)
  • Tóth, Géza (Combinatorial geometry)

STUDIA SCIENTIARUM MATHEMATICARUM HUNGARICA
Gábor Sági
Address: P.O. Box 127, H–1364 Budapest, Hungary
Phone: (36 1) 483 8344 ---- Fax: (36 1) 483 8333
E-mail: smh.studia@renyi.mta.hu