View More View Less
  • 1 University of Sousse, ISSAT, Sousse, Tunisia
  • 2 University of Sfax, BP 802, 3038 Sfax, Tunisia
  • 3 University of Carthage, IPEIN, Sousse, Tunisia
Restricted access

Purchase article

USD  $25.00

1 year subscription (Individual Only)

USD  $800.00

Over the (1, 1)-dimensional real supercircle, we consider the K(1)-modules Dλ,μk of linear differential operators of order k acting on the superspaces of weighted densities, where K(1) is the Lie superalgebra of contact vector fields. We give, in contrast to the classical setting, a classification of these modules. This work is the simplest superization of a result by Gargoubi and Ovsienko.

  • [1]

    Agrebaoui, B., Ben Ammar, M., Ben Fraj, N. and Ovsienko, V., Deformations of Modules of Differential Forms, J. Nonlinear Math Phys., 10:2 (2003), 148156, DOI: 10.2991/jnmp.2003.10.2.3.

    • Search Google Scholar
    • Export Citation
  • [2]

    Basdouri, I., Ben Ammar, M., Ben Fraj, N., Boujelbene, M. and Kammoun, K., Cohomology of the Lie superalgebra of contact vector fields on K1|1 and deformations of the superspace of symbols, J. Nonlinear Math. Phys., 16:4 (2009), 373409, DOI: 10.1142/ S1402925109000431.

    • Search Google Scholar
    • Export Citation
  • [3]

    Basdouri, I. and Ben Ammar, M., Cohomology of osp(1|2) with coefficients in Dλ,μ, Lett. Math. Phys., 81:3 (2007), 239251.

  • [4]

    Ben Fraj, N. and Omri, S., Deforming the Lie Superalgebra of Contact Vector Fields on S 1|1 Inside the Lie Superalgebra of Superpseudodifferential Operators on S 1|1, J. Nonlinear Math. Phys., 13:1 (2006), 1933, DOI: 10.2991/jnmp.2006.13.1.3.

    • Search Google Scholar
    • Export Citation
  • [5]

    Ben Fraj, N. and Omri, S., Deforming the Lie superalgebra of contact vector fields on S 1|2 inside the Lie superalgebra of pseudodifferential operators on S 1|2, Theor. Math. Phys., 163:2 (2010), 618633.

    • Search Google Scholar
    • Export Citation
  • [6]

    Ben Fraj, N., Laraiedh, I. and Omri, S., Supertransvectants, cohomology and deformations, J. Math. Phys., 54:2 (2013), 023501; http://dx.doi.org/10.1063/1.4789539.

    • Search Google Scholar
    • Export Citation
  • [7]

    Conley, C. H., Conformal symbols and the action of Contact vector fields over the superline, J. Reine Angew. Math., 633 (2009), 115163.

    • Search Google Scholar
    • Export Citation
  • [8]

    Conley, C. H., Equivalence classes of subquotients of supersymmetric pseudodifferential operator modules, arXiv: 1310.3302v1 [math.RT].

    • Export Citation
  • [9]

    Duval, C. and Ovsienko, V., Space of second order linear Differential Operators as a module over the Lie algebra of vector fields, Adv. in Math., 132:2 (1997), 316333.

    • Search Google Scholar
    • Export Citation
  • [10]

    Gargoubi, H., Sur la géométrie de l’espace des opérateurs différentiels linéaires sur ℝ, Bull. Soc. Roy. Sci. Liège., 69:1 (2000), 2147.

    • Search Google Scholar
    • Export Citation
  • [11]

    Gargoubi, H., Mellouli, N. and Ovsienko, V., Differential operators on supercircle: conformally equivariant quantization and symbol calculus, Lett. Math. Phys., 79 (2007), 5165.

    • Search Google Scholar
    • Export Citation
  • [12]

    Gieres, F. and Theisen, S., Superconformally covariant operators and super Walgebras, J. Math. Phys., 34 59645985 (1993).

  • [13]

    Gargoubi, H. and Ovsienko, V., Space of linear differential operators on the real line as a module over the Lie algebra of vector fields, Internat. Math. Res. Notices., 5 (1996), 235251.

    • Search Google Scholar
    • Export Citation
  • [14]

    Gargoubi, H. and Ovsienko, V., Modules of Differential Operators on the Real Line, Functional Analysis and Its Applications., 35:1 (2001), 1318.

    • Search Google Scholar
    • Export Citation
  • [15]

    Gargoubi, H. and Ovsienko, V., Supertransvectants and symplectic geometry, Internat. Math. Res. Notices., 2008 ID rnn021; arXiv: 0705.1411v1 [math-ph].

    • Search Google Scholar
    • Export Citation
  • [16]

    Grozman, P., Leites, D. and Shchepochkina, I., Lie superalgebras of string theories, Acta Mathematica Vietnamica., 26:1 (2001), 2763; arXiv: hep-th/9702120.

    • Search Google Scholar
    • Export Citation
  • [17]

    Leites, D., Introduction to the theory of supermanifolds, Uspekhi Mat. Nauk., 35:1 (1980), 357; translated in english in Russian Math. Surveys, 35:1 (1980),164.

    • Search Google Scholar
    • Export Citation
  • [18]

    Lecomte, P. B. P., Mathonet, P. and Tisset, E., Comparison of some modules of the Lie algebra of vector fields, Indag. Math. N.S., 7:4 (1996), 461471.

    • Search Google Scholar
    • Export Citation
  • [19]

    Mathonet, P., Intertwining operators between some spaces of differential operators on manifold, Comm.Algebra., 27:2 (1999), 755776.

  • [20]

    Nijenhuis, A. and Richardson, R. W., Jr., Deformations of homomorphisms of Lie groups and Lie algebras, Bull. Amer. Math. Soc., 73 (1967), 175179.

    • Search Google Scholar
    • Export Citation
  • [21]

    Radul, A. O., Non-trivial central extensions of Lie algebras of differential operators in two higher dimensions, Phys. Lett. B., 265 (1991), 8691.

    • Search Google Scholar
    • Export Citation

The author instruction is available in PDF.

Please, download the file from HERE

Manuscript submission: HERE

 

  • Impact Factor (2019): 0.486
  • Scimago Journal Rank (2019): 0.234
  • SJR Hirsch-Index (2019): 23
  • SJR Quartile Score (2019): Q3 Mathematics (miscellaneous)
  • Impact Factor (2018): 0.309
  • Scimago Journal Rank (2018): 0.253
  • SJR Hirsch-Index (2018): 21
  • SJR Quartile Score (2018): Q3 Mathematics (miscellaneous)

Language: English, French, German

Founded in 1966
Publication: One volume of four issues annually
Publication Programme: 2020. Vol. 57.
Indexing and Abstracting Services:

  • CompuMath Citation Index
  • Mathematical Reviews
  • Referativnyi Zhurnal/li>
  • Research Alert
  • Science Citation Index Expanded (SciSearch)/li>
  • SCOPUS
  • The ISI Alerting Services

 

Subscribers can access the electronic version of every printed article.

Senior editors

Editor(s)-in-Chief: Pálfy Péter Pál

Managing Editor(s): Sági, Gábor

Editorial Board

  • Biró, András (Number theory)
  • Csáki, Endre (Probability theory and stochastic processes, Statistics)
  • Domokos, Mátyás (Algebra (Ring theory, Invariant theory))
  • Győri, Ervin (Graph and hypergraph theory, Extremal combinatorics, Designs and configurations)
  • O. H. Katona, Gyula (Combinatorics)
  • Márki, László (Algebra (Semigroup theory, Category theory, Ring theory))
  • Némethi, András (Algebraic geometry, Analytic spaces, Analysis on manifolds)
  • Pach, János (Combinatorics, Discrete and computational geometry)
  • Rásonyi, Miklós (Probability theory and stochastic processes, Financial mathematics)
  • Révész, Szilárd Gy. (Analysis (Approximation theory, Potential theory, Harmonic analysis, Functional analysis))
  • Ruzsa, Imre Z. (Number theory)
  • Soukup, Lajos (General topology, Set theory, Model theory, Algebraic logic, Measure and integration)
  • Stipsicz, András (Low dimensional topology and knot theory, Manifolds and cell complexes, Differential topology)
  • Szász, Domokos (Dynamical systems and ergodic theory, Mechanics of particles and systems)
  • Tóth, Géza (Combinatorial geometry)

STUDIA SCIENTIARUM MATHEMATICARUM HUNGARICA
Gábor Sági
Address: P.O. Box 127, H–1364 Budapest, Hungary
Phone: (36 1) 483 8344 ---- Fax: (36 1) 483 8333
E-mail: smh.studia@renyi.mta.hu