View More View Less
  • 1 Cairo University, 12613 Giza, Egypt
Restricted access

Purchase article

USD  $25.00

1 year subscription (Individual Only)

USD  $800.00

Let G be a finite group. A subgroup H of G is said to be s-permutable in G if H permutes with all Sylow subgroups of G. Let H be a subgroup of G and let HsG be the subgroup of H generated by all those subgroups of H which are s-permutable in G. A subgroup H of G is called n-embedded in G if G has a normal subgroup T such that HG = HT and HTHsG, where HG is the normal closure of H in G. We investigate the influence of n-embedded subgroups of the p-nilpotency and p-supersolvability of G.

  • [1]

    Ballester-Bolinches, A., Esteban-Romero, R. and Asaad, M., Products of finite groups, De Gruyter Expositions in mathematics, vol. 53. Walter de Gruyter, Berlin (2010).

    • Search Google Scholar
    • Export Citation
  • [2]

    Buckley, J., Finite groups whose minimal subgroups are normal, Math. Z., 116 (1970), 1517.

  • [3]

    Doerk, K. and Hawkes, T., Finite solvable groups, De Gruyter Expositions in mathematics, Vol. 4, Walter de Gruyter, Berlin (1992).

  • [4]

    Gorenstein, D., Finite Groups, New York-London, Harper & Row (1968).

  • [5]

    Guo, W. and Skiba, A. N., Finite groups with given s-embedded and n-embedded subgroups, J. Algebra, 321, 28432860 (2009).

  • [6]

    Huppert, B., Endliche Gruppen I., Grund. Math. Wiss., Vol. 134. Springer-Verlag, Berlin (1967).

  • [7]

    Kegel, O., Sylow-Gruppen und Subnormalteiler endlicher, Gruppen. Math. Z., 78 (1962), 205221.

  • [8]

    Li, Y., Qiao, S., Su, N. and Wang, Y., On weakly s-semipermutable subgroups of finite groups, J. Algebra, 371 (2012), 250261.

  • [9]

    Schmid, P., Subgroups permutable with all Sylow subgroups, J. Algebra, 207 (1998), 285293.

  • [10]

    Shaalan, A., The influence of π quasinormality of some subgroups on the structure of a finite group, Acta Math. Hungar., 56 (1990), 287293.

    • Search Google Scholar
    • Export Citation
  • [11]

    Shemetkov, L. A., Formations of Finite Groups, Moscow, Nauka, Main Editorial Board for Physical and Mathematical Literature (1978).

  • [12]

    Srinivasan, M., Two sufficient conditions for supersolvability of finite groups, Israel J. Math., 35 (1980), 210214.

  • [13]

    Wang, Y., c-normality of groups and its propertie, J. Algebra, 180 (1996), 954965.

  • [14]

    Weinstein, M. (ed.), et al., Between Nilpotent and Solvable, Polygonal Publishing House, Passaic N. J. (1982).

The author instruction is available in PDF.

Please, download the file from HERE

Manuscript submission: HERE

 

  • Impact Factor (2019): 0.486
  • Scimago Journal Rank (2019): 0.234
  • SJR Hirsch-Index (2019): 23
  • SJR Quartile Score (2019): Q3 Mathematics (miscellaneous)
  • Impact Factor (2018): 0.309
  • Scimago Journal Rank (2018): 0.253
  • SJR Hirsch-Index (2018): 21
  • SJR Quartile Score (2018): Q3 Mathematics (miscellaneous)

Language: English, French, German

Founded in 1966
Publication: One volume of four issues annually
Publication Programme: 2020. Vol. 57.
Indexing and Abstracting Services:

  • CompuMath Citation Index
  • Mathematical Reviews
  • Referativnyi Zhurnal/li>
  • Research Alert
  • Science Citation Index Expanded (SciSearch)/li>
  • SCOPUS
  • The ISI Alerting Services

 

Subscribers can access the electronic version of every printed article.

Senior editors

Editor(s)-in-Chief: Pálfy Péter Pál

Managing Editor(s): Sági, Gábor

Editorial Board

  • Biró, András (Number theory)
  • Csáki, Endre (Probability theory and stochastic processes, Statistics)
  • Domokos, Mátyás (Algebra (Ring theory, Invariant theory))
  • Győri, Ervin (Graph and hypergraph theory, Extremal combinatorics, Designs and configurations)
  • O. H. Katona, Gyula (Combinatorics)
  • Márki, László (Algebra (Semigroup theory, Category theory, Ring theory))
  • Némethi, András (Algebraic geometry, Analytic spaces, Analysis on manifolds)
  • Pach, János (Combinatorics, Discrete and computational geometry)
  • Rásonyi, Miklós (Probability theory and stochastic processes, Financial mathematics)
  • Révész, Szilárd Gy. (Analysis (Approximation theory, Potential theory, Harmonic analysis, Functional analysis))
  • Ruzsa, Imre Z. (Number theory)
  • Soukup, Lajos (General topology, Set theory, Model theory, Algebraic logic, Measure and integration)
  • Stipsicz, András (Low dimensional topology and knot theory, Manifolds and cell complexes, Differential topology)
  • Szász, Domokos (Dynamical systems and ergodic theory, Mechanics of particles and systems)
  • Tóth, Géza (Combinatorial geometry)

STUDIA SCIENTIARUM MATHEMATICARUM HUNGARICA
Gábor Sági
Address: P.O. Box 127, H–1364 Budapest, Hungary
Phone: (36 1) 483 8344 ---- Fax: (36 1) 483 8333
E-mail: smh.studia@renyi.mta.hu