View More View Less
  • 1 I. Javakhishvili Tbilisi State University,, 2 University St., Tbilisi 0186, Georgia
Restricted access

Purchase article

USD  $25.00

1 year subscription (Individual Only)

USD  $800.00

S. Banach in [1] proved that for any function fL2(0, 1), f ≁ 0, there exists an ONS (orthonormal system) such that the Fourier series of this function is not summable a.e. by the method (C, α), α > 0.

D. Menshov found the conditions which should be satisfied by the Fourier coefficients of the function for the summability a.e. of its Fourier series by the method (C, α), α > 0.

In this paper the necessary and sufficient conditions are found which should be satisfied by the ONS functions (φn(x)) so that the Fourier coefficients (by this system) of functions from class Lip 1 or A (absolutely continuous) satisfy the conditions of D. Menshov.

  • [1]

    Banach, S., Sur la divergence des series orthogonales, Studia Math., 9 (1940), 139155.

  • [2]

    Aleksic, G., Convergence problems of orthogonal series, (Russian) Izdat. Inostran. Lit., Moscow, 1963.

  • [3]

    Tsagareishvili, V., Absolute convergence of Fourier seriws of functions of class Lip 1 and functions of bounded variation, Izv. Mat., 76:2 (2012), 419429.

    • Search Google Scholar
    • Export Citation
  • [4]

    Ul’janov, P. L., On Haar series, (Russian) Mat. Sb. (N.S.), 63(105) (1964), 356391.

The author instruction is available in PDF.

Please, download the file from HERE

Manuscript submission: HERE

 

  • Impact Factor (2019): 0.486
  • Scimago Journal Rank (2019): 0.234
  • SJR Hirsch-Index (2019): 23
  • SJR Quartile Score (2019): Q3 Mathematics (miscellaneous)
  • Impact Factor (2018): 0.309
  • Scimago Journal Rank (2018): 0.253
  • SJR Hirsch-Index (2018): 21
  • SJR Quartile Score (2018): Q3 Mathematics (miscellaneous)

Language: English, French, German

Founded in 1966
Publication: One volume of four issues annually
Publication Programme: 2020. Vol. 57.
Indexing and Abstracting Services:

  • CompuMath Citation Index
  • Mathematical Reviews
  • Referativnyi Zhurnal/li>
  • Research Alert
  • Science Citation Index Expanded (SciSearch)/li>
  • SCOPUS
  • The ISI Alerting Services

 

Subscribers can access the electronic version of every printed article.

Senior editors

Editor(s)-in-Chief: Pálfy Péter Pál

Managing Editor(s): Sági, Gábor

Editorial Board

  • Biró, András (Number theory)
  • Csáki, Endre (Probability theory and stochastic processes, Statistics)
  • Domokos, Mátyás (Algebra (Ring theory, Invariant theory))
  • Győri, Ervin (Graph and hypergraph theory, Extremal combinatorics, Designs and configurations)
  • O. H. Katona, Gyula (Combinatorics)
  • Márki, László (Algebra (Semigroup theory, Category theory, Ring theory))
  • Némethi, András (Algebraic geometry, Analytic spaces, Analysis on manifolds)
  • Pach, János (Combinatorics, Discrete and computational geometry)
  • Rásonyi, Miklós (Probability theory and stochastic processes, Financial mathematics)
  • Révész, Szilárd Gy. (Analysis (Approximation theory, Potential theory, Harmonic analysis, Functional analysis))
  • Ruzsa, Imre Z. (Number theory)
  • Soukup, Lajos (General topology, Set theory, Model theory, Algebraic logic, Measure and integration)
  • Stipsicz, András (Low dimensional topology and knot theory, Manifolds and cell complexes, Differential topology)
  • Szász, Domokos (Dynamical systems and ergodic theory, Mechanics of particles and systems)
  • Tóth, Géza (Combinatorial geometry)

STUDIA SCIENTIARUM MATHEMATICARUM HUNGARICA
Gábor Sági
Address: P.O. Box 127, H–1364 Budapest, Hungary
Phone: (36 1) 483 8344 ---- Fax: (36 1) 483 8333
E-mail: smh.studia@renyi.mta.hu