View More View Less
  • 1 Universidad de Valencia, 46100 Burjassot — Valencia, Spain
  • 2 Universitat Politécnica de Valéncia, Camino de Vera s/n, 46022 Valencia, Spain
Restricted access

Purchase article

USD  $25.00

1 year subscription (Individual Only)

USD  $800.00

Motivated by the well known Kadec-Pełczynski disjointification theorem, we undertake an analysis of the supports of non-zero functions in strongly embedded subspaces of Banach functions spaces. The main aim is to isolate those properties that bring additional information on strongly embedded subspaces. This is the case of the support localization property, which is a necessary condition fulfilled by all strongly embedded subspaces. Several examples that involve Rademacher functions, the Volterra operator, Lorentz spaces or Orlicz spaces are provided.

  • [1]

    Blasco, O., Calabuig, J. M. and Sánchez Pérez, E. A., p-variations of vector measures with respect to vector measures and integral representation of operators, Banach J. Math. Anal., 9, 1 (2015), 273285.

    • Search Google Scholar
    • Export Citation
  • [2]

    Calabuig, J. M., Rodríguez, J. and Sánchez Pérez, E. A., Strongly embedded subspaces of p-convex Banach function spaces, Positivity, 17(3) (2013), 775791.

    • Search Google Scholar
    • Export Citation
  • [3]

    Carothers, N. L. and Dilworth, S. J., Subspaces of L p;q, Proc. Am. Math. Soc., 104, 2 (1988), 537545.

  • [4]

    Diestel, J. and Uhl, J. J., Vector Measures, Math. Surveys, vol. 15, Amer. Math. Soc., Providence, RI, 1977.

  • [5]

    Fernández, A., Mayoral, F., Naranjo, F., Sáez, C. and Sánchez-Pérez, E. A., Spaces of p-integrable functions with respect to a vector measure, Positivity, 10 (2006), 116.

    • Search Google Scholar
    • Export Citation
  • [6]

    Figiel, T., Johnson, W. B. and Tzafriri, L., On Banach lattices and spaces having local unconditional structure with applications to Lorentz funtion spaces, J. Approx. Theory, 13 (1975), 395412.

    • Search Google Scholar
    • Export Citation
  • [7]

    Flores, J., Hernández, F. L., Kalton, N. J. and Tradacete, P., Characterizations of strictly singular operators on Banach lattices, J. London Math. Soc., (2) 79 (2009), 612630.

    • Search Google Scholar
    • Export Citation
  • [8]

    Flores, J., Hernández, F. L., Semenov, E. M. and Tradacete, P., Strictly singular and power-compact operators on Banach lattices, Israel J. Math., 188, 1 (2012), 323352.

    • Search Google Scholar
    • Export Citation
  • [9]

    Kadec, I. and Pełczynski, A., Bases, Lacunary sequences and complemented subspaces in the spaces L p, Studia Math., 21 (1962), 161176.

    • Search Google Scholar
    • Export Citation
  • [10]

    Kalton, N. J., Banach spaces embedded into L 0, Israel J. Math., 52, (1985), 305319.

  • [11]

    Lindenstrauss, J. and Tzafriri, L., Classical Banach Spaces, II, Springer, Berlin, 1996.

  • [12]

    Novikov, S. Ya., Singularities of embedding operators between symmetric function spaces on [0, 1], Math. Notes, 62 (4) (1997), 457468.

    • Search Google Scholar
    • Export Citation
  • [13]

    Okada, S., Ricker, W. J. and Sánchez Pérez, E. A., Optimal domain and integral extension of operators acting in function spaces, Operator Theory: Advances and Applications, 180. Birkhäuser Verlag, Basel, 2008.

    • Search Google Scholar
    • Export Citation
  • [14]

    Okada, S., Ricker, W. J. and Sánchez Pérez, E. A., Lattice copies of c 0 and ℓ1 in spaces of integrable functions for a vector measure, Dissertationes Mathe-maticae, 500 (2014), 66.

    • Search Google Scholar
    • Export Citation
  • [15]

    Rodin, V. A. and Semyonov, E. M., Rademacher series in symmetric spaces, Anal. Math., 1(2) (1975), 161176.

  • [16]

    Sánchez Pérez, E. A., Compactness arguments for spaces of p-integrable functions with respect to a vector measure and factorization of operators through Lebesgue-Bochner spaces, Illinois J. Math., 45 3 (2001), 907923.

    • Search Google Scholar
    • Export Citation
  • [17]

    Tradacete, P., Subspace structure of Lorentz L p,q spaces and strictly singular operators, J. Math. Anal. Appl., 367 1 (2010), 98107.