View More View Less
  • 1 Universidad de Valencia, 46100 Burjassot — Valencia, Spain
  • 2 Universitat Politécnica de Valéncia, Camino de Vera s/n, 46022 Valencia, Spain
Restricted access

Purchase article

USD  $25.00

1 year subscription (Individual Only)

USD  $800.00

Motivated by the well known Kadec-Pełczynski disjointification theorem, we undertake an analysis of the supports of non-zero functions in strongly embedded subspaces of Banach functions spaces. The main aim is to isolate those properties that bring additional information on strongly embedded subspaces. This is the case of the support localization property, which is a necessary condition fulfilled by all strongly embedded subspaces. Several examples that involve Rademacher functions, the Volterra operator, Lorentz spaces or Orlicz spaces are provided.

  • [1]

    Blasco, O., Calabuig, J. M. and Sánchez Pérez, E. A., p-variations of vector measures with respect to vector measures and integral representation of operators, Banach J. Math. Anal., 9, 1 (2015), 273285.

    • Search Google Scholar
    • Export Citation
  • [2]

    Calabuig, J. M., Rodríguez, J. and Sánchez Pérez, E. A., Strongly embedded subspaces of p-convex Banach function spaces, Positivity, 17(3) (2013), 775791.

    • Search Google Scholar
    • Export Citation
  • [3]

    Carothers, N. L. and Dilworth, S. J., Subspaces of L p;q, Proc. Am. Math. Soc., 104, 2 (1988), 537545.

  • [4]

    Diestel, J. and Uhl, J. J., Vector Measures, Math. Surveys, vol. 15, Amer. Math. Soc., Providence, RI, 1977.

  • [5]

    Fernández, A., Mayoral, F., Naranjo, F., Sáez, C. and Sánchez-Pérez, E. A., Spaces of p-integrable functions with respect to a vector measure, Positivity, 10 (2006), 116.

    • Search Google Scholar
    • Export Citation
  • [6]

    Figiel, T., Johnson, W. B. and Tzafriri, L., On Banach lattices and spaces having local unconditional structure with applications to Lorentz funtion spaces, J. Approx. Theory, 13 (1975), 395412.

    • Search Google Scholar
    • Export Citation
  • [7]

    Flores, J., Hernández, F. L., Kalton, N. J. and Tradacete, P., Characterizations of strictly singular operators on Banach lattices, J. London Math. Soc., (2) 79 (2009), 612630.

    • Search Google Scholar
    • Export Citation
  • [8]

    Flores, J., Hernández, F. L., Semenov, E. M. and Tradacete, P., Strictly singular and power-compact operators on Banach lattices, Israel J. Math., 188, 1 (2012), 323352.

    • Search Google Scholar
    • Export Citation
  • [9]

    Kadec, I. and Pełczynski, A., Bases, Lacunary sequences and complemented subspaces in the spaces L p, Studia Math., 21 (1962), 161176.

    • Search Google Scholar
    • Export Citation
  • [10]

    Kalton, N. J., Banach spaces embedded into L 0, Israel J. Math., 52, (1985), 305319.

  • [11]

    Lindenstrauss, J. and Tzafriri, L., Classical Banach Spaces, II, Springer, Berlin, 1996.

  • [12]

    Novikov, S. Ya., Singularities of embedding operators between symmetric function spaces on [0, 1], Math. Notes, 62 (4) (1997), 457468.

    • Search Google Scholar
    • Export Citation
  • [13]

    Okada, S., Ricker, W. J. and Sánchez Pérez, E. A., Optimal domain and integral extension of operators acting in function spaces, Operator Theory: Advances and Applications, 180. Birkhäuser Verlag, Basel, 2008.

    • Search Google Scholar
    • Export Citation
  • [14]

    Okada, S., Ricker, W. J. and Sánchez Pérez, E. A., Lattice copies of c 0 and ℓ1 in spaces of integrable functions for a vector measure, Dissertationes Mathe-maticae, 500 (2014), 66.

    • Search Google Scholar
    • Export Citation
  • [15]

    Rodin, V. A. and Semyonov, E. M., Rademacher series in symmetric spaces, Anal. Math., 1(2) (1975), 161176.

  • [16]

    Sánchez Pérez, E. A., Compactness arguments for spaces of p-integrable functions with respect to a vector measure and factorization of operators through Lebesgue-Bochner spaces, Illinois J. Math., 45 3 (2001), 907923.

    • Search Google Scholar
    • Export Citation
  • [17]

    Tradacete, P., Subspace structure of Lorentz L p,q spaces and strictly singular operators, J. Math. Anal. Appl., 367 1 (2010), 98107.

The author instruction is available in PDF.

Please, download the file from HERE

Manuscript submission: HERE

 

  • Impact Factor (2019): 0.486
  • Scimago Journal Rank (2019): 0.234
  • SJR Hirsch-Index (2019): 23
  • SJR Quartile Score (2019): Q3 Mathematics (miscellaneous)
  • Impact Factor (2018): 0.309
  • Scimago Journal Rank (2018): 0.253
  • SJR Hirsch-Index (2018): 21
  • SJR Quartile Score (2018): Q3 Mathematics (miscellaneous)

Language: English, French, German

Founded in 1966
Publication: One volume of four issues annually
Publication Programme: 2020. Vol. 57.
Indexing and Abstracting Services:

  • CompuMath Citation Index
  • Mathematical Reviews
  • Referativnyi Zhurnal/li>
  • Research Alert
  • Science Citation Index Expanded (SciSearch)/li>
  • SCOPUS
  • The ISI Alerting Services

 

Subscribers can access the electronic version of every printed article.

Senior editors

Editor(s)-in-Chief: Pálfy Péter Pál

Managing Editor(s): Sági, Gábor

Editorial Board

  • Biró, András (Number theory)
  • Csáki, Endre (Probability theory and stochastic processes, Statistics)
  • Domokos, Mátyás (Algebra (Ring theory, Invariant theory))
  • Győri, Ervin (Graph and hypergraph theory, Extremal combinatorics, Designs and configurations)
  • O. H. Katona, Gyula (Combinatorics)
  • Márki, László (Algebra (Semigroup theory, Category theory, Ring theory))
  • Némethi, András (Algebraic geometry, Analytic spaces, Analysis on manifolds)
  • Pach, János (Combinatorics, Discrete and computational geometry)
  • Rásonyi, Miklós (Probability theory and stochastic processes, Financial mathematics)
  • Révész, Szilárd Gy. (Analysis (Approximation theory, Potential theory, Harmonic analysis, Functional analysis))
  • Ruzsa, Imre Z. (Number theory)
  • Soukup, Lajos (General topology, Set theory, Model theory, Algebraic logic, Measure and integration)
  • Stipsicz, András (Low dimensional topology and knot theory, Manifolds and cell complexes, Differential topology)
  • Szász, Domokos (Dynamical systems and ergodic theory, Mechanics of particles and systems)
  • Tóth, Géza (Combinatorial geometry)

STUDIA SCIENTIARUM MATHEMATICARUM HUNGARICA
Gábor Sági
Address: P.O. Box 127, H–1364 Budapest, Hungary
Phone: (36 1) 483 8344 ---- Fax: (36 1) 483 8333
E-mail: smh.studia@renyi.mta.hu