View More View Less
  • 1 Comenius University, 842 48 Bratislava, Slovakia
  • 2 Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic
Restricted access

Purchase article

USD  $25.00

1 year subscription (Individual Only)

USD  $800.00

The oscillatory properties of half-linear second order Euler type differential equations are studied, where the coefficients of the considered equations can be unbounded. For these equations, we prove an oscillation criterion and a non-oscillation one. We also mention a corollary which shows how our criteria improve the known results. In the corollary, the criteria give an explicit oscillation constant.

  • [1]

    Agarwal, R. P., Grace, A. R. and O’Regan, D., Oscillation theory for second order linear, half-linear, superlinear and sublinear dynamic equations, Kluwer Academic Publishers, Dordrecht, 2002.

    • Search Google Scholar
    • Export Citation
  • [2]

    Ammann, K. and Teschl, G., Relative oscillation theory for Jacobi matrices, Difference equations and applications, Uğur-Bahçȩsehir Univ. Publ. Co., Istanbul, 2009, 105115.

    • Search Google Scholar
    • Export Citation
  • [3]

    Bartušek, M., Cecchi, M., Došlá, Z. and Marini, M., On oscillatory solutions of quasilinear differential equations, J. Math. Anal. Appl., 320 (2006), 108120.

    • Search Google Scholar
    • Export Citation
  • [4]

    Došlý, O. and Fišnarová, S., Linearized Riccati technique and (non-)oscillation criteria for half-linear difference equations, Adv. Difference Equ., 2008, article ID 438130, 118.

    • Search Google Scholar
    • Export Citation
  • [5]

    Došlý, O. and Funková, H., Euler type half-linear differential equation with periodic coefficients, Abstr. Appl. Anal., 2013, article ID 714263, 16.

    • Search Google Scholar
    • Export Citation
  • [6]

    Došlý, O. and Funková, H., Perturbations of half-linear Euler differential equation and transformations of modified Riccati equation, Abstr. Appl. Anal., 2012, article ID 738472, 119.

    • Search Google Scholar
    • Export Citation
  • [7]

    Došlý, O. and Hasil, P., Critical oscillation constant for half-linear differential equations with periodic coefficients, Ann. Mat. Pura Appl., 190 (2011), No. 3, 395408.

    • Search Google Scholar
    • Export Citation
  • [8]

    Došlý, O. and Řehák, P., Half-linear differential equations, Elsevier, Amsterdam, 2005.

  • [9]

    Došlý, O. and Řezničková, J., Nonprincipal solutions in oscillation criteria for half-linear differential equations, Studia Sci. Math. Hungar., 47 (2010), No. 1, 127137.

    • Search Google Scholar
    • Export Citation
  • [10]

    Elbert, Á., Asymptotic behaviour of autonomous half-linear differential systems on the plane, Studia Sci. Math. Hungar., 19 (1984), No. 2–4, 447464.

    • Search Google Scholar
    • Export Citation
  • [11]

    Elbert, Á., Oscillation and nonoscillation theorems for some nonlinear ordinary differential equations, Ordinary and partial differential equations, Dundee, 1982, Lecture Notes in Math., vol. 964, Springer, Berlin, 1982, 187212.

    • Search Google Scholar
    • Export Citation
  • [12]

    Gesztesy, F. and Ünal, M., Perturbative oscillation criteria and Hardy-type inequalities, Math. Nachr., 189 (1998), 121144.

  • [13]

    Hasil, P., Conditional oscillation of half-linear differential equations with periodic coefficients, Arch. Math. (Brno), 44 (2008), No. 2, 119131.

    • Search Google Scholar
    • Export Citation
  • [14]

    Hasil, P. and Veselý, M., Critical oscillation constant for difference equations with almost periodic coefficients, Abstr. Appl. Anal., 2012, article ID 471435, 119.

    • Search Google Scholar
    • Export Citation
  • [15]

    Hasil, P. and Veselý, M., Oscillation of half-linear differential equations with asymptotically almost periodic coefficients, Adv. Difference Equ., 2013, No. 122, 115.

    • Search Google Scholar
    • Export Citation
  • [16]

    Jiang, J. and Tang, X., Oscillation of second order half-linear difference equations (I), Applied Mathematical Sciences, 8 (2014), No. 37–40, 19571968.

    • Search Google Scholar
    • Export Citation
  • [17]

    Kneser, A., Untersuchungen Über die reellen Nullstellen der Integrale linearer Differentialgleichungen, Math. Ann., 42 (1893), No. 3, 409435.

    • Search Google Scholar
    • Export Citation
  • [18]

    Krüger, H. and Teschl, G., Effective Prüfer angles and relative oscillation criteria, J. Differential Equations, 245 (2008), No. 12, 38233848.

    • Search Google Scholar
    • Export Citation
  • [19]

    Krüger, H. and Teschl, G., Relative oscillation theory for Sturm–Liouville operators extended, J. Funct. Anal., 254 (2008), No. 6, 17021720.

    • Search Google Scholar
    • Export Citation
  • [20]

    Krüger, H. and Teschl, G., Relative oscillation theory, weighted zeros of the Wronskian, and the spectral shift function, Comm. Math. Phys., 287 (2009), No. 2, 613640.

    • Search Google Scholar
    • Export Citation
  • [21]

    Naĭman, P. B., The set of isolated points of increase of the spectral function pertaining to a limit-constant Jacobi matrix, Izv. Vysš., Učebn. Zaved. Matematika, 1959, No. 1(8), 129135.

    • Search Google Scholar
    • Export Citation
  • [22]

    Schmidt, K. M., Critical coupling constant and eigenvalue asymptotics of perturbed periodic Sturm–Liouville operators, Comm. Math. Phys., 211 (2000), 465485.

    • Search Google Scholar
    • Export Citation
  • [23]

    Schmidt, K. M., Oscillation of perturbed Hill equation and lower spectrum of radially periodic Schrödinger operators in the plane, Proc. Amer. Math. Soc., 127 (1999), 23672374.

    • Search Google Scholar
    • Export Citation
  • [24]

    Veselý, M., Construction of almost periodic functions with given properties, Electron. J. Differential Equations, 2011, No. 29, 125.

    • Search Google Scholar
    • Export Citation
  • [25]

    Veselý, M., Construction of almost periodic sequences with given properties, Electron. J. Differential Equations, 2008, No. 126, 122.

    • Search Google Scholar
    • Export Citation
  • [26]

    Veselý, M. and Hasil, P., Conditional oscillation of Riemann–Weber half-linear differential equations with asymptotically almost periodic coefficients, Studia Sci. Math. Hungar., 51 (2014), No. 3, 303321.

    • Search Google Scholar
    • Export Citation
  • [27]

    Veselý, M. and Hasil, P., Oscillation and non-oscillation of asymptotically almost periodic half-linear difference equations, Abstr. Appl. Anal., 2013, article ID 432936, 112.

    • Search Google Scholar
    • Export Citation
  • [28]

    Veselý, M., Hasil, P. and Mařík, R., Conditional oscillation of half-linear differential equations with coefficients having mean values, Abstr. Appl. Anal., 2014, article ID 258159, 114.

    • Search Google Scholar
    • Export Citation
  • [29]

    Vítovec, J., Critical oscillation constant for Euler-type dynamic equations on time scales, Appl. Math. Comput., 243 (2014), 838848.

    • Search Google Scholar
    • Export Citation
  • [30]

    Yamaoka, N., Oscillation criteria for second-order nonlinear difference equations of Euler type, Adv. Difference Equ., 2012, No. 218, 114.

    • Search Google Scholar
    • Export Citation

The author instruction is available in PDF.

Please, download the file from HERE

Manuscript submission: HERE

 

  • Impact Factor (2019): 0.486
  • Scimago Journal Rank (2019): 0.234
  • SJR Hirsch-Index (2019): 23
  • SJR Quartile Score (2019): Q3 Mathematics (miscellaneous)
  • Impact Factor (2018): 0.309
  • Scimago Journal Rank (2018): 0.253
  • SJR Hirsch-Index (2018): 21
  • SJR Quartile Score (2018): Q3 Mathematics (miscellaneous)

Language: English, French, German

Founded in 1966
Publication: One volume of four issues annually
Publication Programme: 2020. Vol. 57.
Indexing and Abstracting Services:

  • CompuMath Citation Index
  • Mathematical Reviews
  • Referativnyi Zhurnal/li>
  • Research Alert
  • Science Citation Index Expanded (SciSearch)/li>
  • SCOPUS
  • The ISI Alerting Services

 

Subscribers can access the electronic version of every printed article.

Senior editors

Editor(s)-in-Chief: Pálfy Péter Pál

Managing Editor(s): Sági, Gábor

Editorial Board

  • Biró, András (Number theory)
  • Csáki, Endre (Probability theory and stochastic processes, Statistics)
  • Domokos, Mátyás (Algebra (Ring theory, Invariant theory))
  • Győri, Ervin (Graph and hypergraph theory, Extremal combinatorics, Designs and configurations)
  • O. H. Katona, Gyula (Combinatorics)
  • Márki, László (Algebra (Semigroup theory, Category theory, Ring theory))
  • Némethi, András (Algebraic geometry, Analytic spaces, Analysis on manifolds)
  • Pach, János (Combinatorics, Discrete and computational geometry)
  • Rásonyi, Miklós (Probability theory and stochastic processes, Financial mathematics)
  • Révész, Szilárd Gy. (Analysis (Approximation theory, Potential theory, Harmonic analysis, Functional analysis))
  • Ruzsa, Imre Z. (Number theory)
  • Soukup, Lajos (General topology, Set theory, Model theory, Algebraic logic, Measure and integration)
  • Stipsicz, András (Low dimensional topology and knot theory, Manifolds and cell complexes, Differential topology)
  • Szász, Domokos (Dynamical systems and ergodic theory, Mechanics of particles and systems)
  • Tóth, Géza (Combinatorial geometry)

STUDIA SCIENTIARUM MATHEMATICARUM HUNGARICA
Gábor Sági
Address: P.O. Box 127, H–1364 Budapest, Hungary
Phone: (36 1) 483 8344 ---- Fax: (36 1) 483 8333
E-mail: smh.studia@renyi.mta.hu