View More View Less
  • 1 Łódź University of Technology, 90-924 Łódź, ul. Wólczańska 215, Poland
Restricted access

Purchase article

USD  $25.00

1 year subscription (Individual Only)

USD  $800.00

The paper focuses on existence of solutions of a system of nonlocal resonant boundary value problems x=f(t,x),x(0)=0,x(1)=01x(s)dg(s), where f : [0, 1] × ℝk → ℝk is continuous and g : [0, 1] → ℝk is a function of bounded variation. Imposing on the function f the following condition: the limit limλ→∞ f(t, λ a) exists uniformly in aS k−1, we have shown that the problem has at least one solution.

  • [1]

    Bai, C. and Fang, J., Existence of positive solutions for three-point boundary value problems at resonance, J. Math. Anal. Appl., 291 (2004), 538549.

    • Search Google Scholar
    • Export Citation
  • [2]

    Cremins, C. T., A fixed-point index and existence theorems for semilinear equations in cones, Nonlinear Anal., 46 (2001), 789806.

  • [3]

    Feng, W., On an M-point boundary value problem, Nonlinear Anal., 30 (1997), no. 8, 53695374.

  • [4]

    Franco, D., Infante, G. and Zima, M., Second order nonlocal boundary value problems at resonance, Math. Nachr., 284 (2011), 875884.

  • [5]

    Gupta, C. P., A generalized multi-point boundary value problem for second order ordinary differential equations, Appl. Math. Comput., 89 (1998), no. 1–3, 133146.

    • Search Google Scholar
    • Export Citation
  • [6]

    Han, X., Positive solutions for a three-point boundary value problem, Nonlinear Anal., 66 (2007), no. 3, 679688.

  • [7]

    Han, X., Positive solutions for a three-point boundary value problem at resonance, J. Math. Anal. Appl., 336 (2007), 556568.

  • [8]

    Infante, G. and Webb, J. R. L., Three-point boundary value problems with solutions that change sign, J. Integral Equations Appl., 15 (2003), no. 1, 3757.

    • Search Google Scholar
    • Export Citation
  • [9]

    Infante, G. and Webb, J. R. L., Positive solutions of some nonlocal boundary value problems, Abstr. Appl. Anal. (2003), no. 18, 10471060.

    • Search Google Scholar
    • Export Citation
  • [10]

    Przeradzki, B., Teoria i praktyka równán rózniczkowych zwyczajnych, U L, Lódz 2003 (in Polish).

  • [11]

    Webb, J. R. L. and Infante, G., Positive solutions of nonlocal boundary value problems: a unified approach, J. London Math. Soc. (2), 74 (2006), no. 3, 673693.

    • Search Google Scholar
    • Export Citation
  • [12]

    Webb, J. R. L. and Infante, G., Positive solutions of nonlocal boundary value problems involving integral conditions, NoDEA Nonlinear Differential Equations Appl., 15 (2008), 4567.

    • Search Google Scholar
    • Export Citation
  • [13]

    Webb, J. R. L. and Zima, M., Multiple positive solutions of resonant and nonresonant nonlocal boundary value problems, Nonlinear Anal., 71 (2009), 13691378.

    • Search Google Scholar
    • Export Citation

The author instruction is available in PDF.

Please, download the file from HERE

Manuscript submission: HERE

 

  • Impact Factor (2019): 0.486
  • Scimago Journal Rank (2019): 0.234
  • SJR Hirsch-Index (2019): 23
  • SJR Quartile Score (2019): Q3 Mathematics (miscellaneous)
  • Impact Factor (2018): 0.309
  • Scimago Journal Rank (2018): 0.253
  • SJR Hirsch-Index (2018): 21
  • SJR Quartile Score (2018): Q3 Mathematics (miscellaneous)

Language: English, French, German

Founded in 1966
Publication: One volume of four issues annually
Publication Programme: 2020. Vol. 57.
Indexing and Abstracting Services:

  • CompuMath Citation Index
  • Mathematical Reviews
  • Referativnyi Zhurnal/li>
  • Research Alert
  • Science Citation Index Expanded (SciSearch)/li>
  • SCOPUS
  • The ISI Alerting Services

 

Subscribers can access the electronic version of every printed article.

Senior editors

Editor(s)-in-Chief: Pálfy Péter Pál

Managing Editor(s): Sági, Gábor

Editorial Board

  • Biró, András (Number theory)
  • Csáki, Endre (Probability theory and stochastic processes, Statistics)
  • Domokos, Mátyás (Algebra (Ring theory, Invariant theory))
  • Győri, Ervin (Graph and hypergraph theory, Extremal combinatorics, Designs and configurations)
  • O. H. Katona, Gyula (Combinatorics)
  • Márki, László (Algebra (Semigroup theory, Category theory, Ring theory))
  • Némethi, András (Algebraic geometry, Analytic spaces, Analysis on manifolds)
  • Pach, János (Combinatorics, Discrete and computational geometry)
  • Rásonyi, Miklós (Probability theory and stochastic processes, Financial mathematics)
  • Révész, Szilárd Gy. (Analysis (Approximation theory, Potential theory, Harmonic analysis, Functional analysis))
  • Ruzsa, Imre Z. (Number theory)
  • Soukup, Lajos (General topology, Set theory, Model theory, Algebraic logic, Measure and integration)
  • Stipsicz, András (Low dimensional topology and knot theory, Manifolds and cell complexes, Differential topology)
  • Szász, Domokos (Dynamical systems and ergodic theory, Mechanics of particles and systems)
  • Tóth, Géza (Combinatorial geometry)

STUDIA SCIENTIARUM MATHEMATICARUM HUNGARICA
Gábor Sági
Address: P.O. Box 127, H–1364 Budapest, Hungary
Phone: (36 1) 483 8344 ---- Fax: (36 1) 483 8333
E-mail: smh.studia@renyi.mta.hu