View More View Less
  • 1 Guangdong Construction Polytechnic, Guangzhou 510440, China
  • 2 Hunan Agricultural University, Changsha 410128, China
  • 3 Hunan Agricultural University, Changsha 410128, China
  • 4 Jinan University, Zhuhai 519070, China
Restricted access

Purchase article

USD  $25.00

1 year subscription (Individual Only)

USD  $800.00

By making use of the critical point theory, the existence of periodic solutions for fourth-order nonlinear p-Laplacian difference equations is obtained. The main approach used in our paper is a variational technique and the Saddle Point Theorem. The problem is to solve the existence of periodic solutions of fourth-order nonlinear p-Laplacian difference equations. The results obtained successfully generalize and complement the existing one.

  • [1]

    Agarwal, R. P., Difference Equations and Inequalities: Theory, Methods and Applications, Marcel Dekker, New York (1992).

  • [2]

    Agarwal, R. P., Perera, K. and O’Regan, D., Multiple positive solutions of singular and nonsingular discrete problems via variational methods, Nonlinear Anal., 58(1–2) (2004), 6973.

    • Search Google Scholar
    • Export Citation
  • [3]

    Agarwal, R. P., Perera, K. and O’Regan, D., Multiple positive solutions of singular discrete p-Laplacian problems via variational methods, Adv. Difference Equ., 2005 (2005), 9399.

    • Search Google Scholar
    • Export Citation
  • [4]

    Ahlbrandt, C. D., Dominant and recessive solutions of symmetric three term recurrences. J. Differential Equations, 107(2) (1994) 238-258.

    • Search Google Scholar
    • Export Citation
  • [5]

    Anderson, D. R., Avery, R. I. and Henderson, J., Existence of solutions for a one dimensional p-Laplacian on time-scales, J. Difference Equ. Appl., 10(10) (2006), 889896.

    • Search Google Scholar
    • Export Citation
  • [6]

    Avery, R. I. and Henderson, J., Existence of three positive pseudo-symmetric solutions for a one dimensional discrete p-Laplacian, J. Difference Equ. Appl., 10(6) (2004), 529539.

    • Search Google Scholar
    • Export Citation
  • [7]

    Cai, X. C., Yu, J. S. and Guo, Z. M., Existence of periodic solutions for fourthorder difference equations, Comput. Math. Appl., 50(1–2) (2005), 4955.

    • Search Google Scholar
    • Export Citation
  • [8]

    Cecchi, M., Marini, M. and Villari, G., On the monotonicity property for a certain class of second order differential equations, J. Differential Equations, 82(2) (1989), 1527.

    • Search Google Scholar
    • Export Citation
  • [9]

    Chang, K. C., Infinite Dimensional Morse Theory and Multiple Solution Problems, Birkhäuser, Boston (1993).

  • [10]

    Chen, P. and Fang, H., Existence of periodic and subharmonic solutions for secondorder p-Laplacian difference equations, Adv. Difference Equ., 2007 (2007), 19.

    • Search Google Scholar
    • Export Citation
  • [11]

    Chen, P. and Tang, X. H., Existence of infinitely many homoclinic orbits for fourth-order difference systems containing both advance and retardation, Appl. Math. Comput., 217(9) (2011), 44084415.

    • Search Google Scholar
    • Export Citation
  • [12]

    Chen, P. and Tang, X. H., New existence and multiplicity of solutions for some Dirichlet problems with impulsive effects, Math. Comput. Modelling, 55(3–4) (2012), 723739.

    • Search Google Scholar
    • Export Citation
  • [13]

    Chen, P. and Tang, X. H., Infinitely many homoclinic solutions for the secondorder discrete p-Laplacian systems, Bull. Belg. Math. Soc., 20(2) (2013), 193212.

    • Search Google Scholar
    • Export Citation
  • [14]

    Chen, P. and Tang, X. H., Existence of homoclinic solutions for some secondorder discrete Hamiltonian systems, J. Difference Equ. Appl., 19(4) (2013), 633648.

    • Search Google Scholar
    • Export Citation
  • [15]

    Erbe, L. H., Xia, H. and Yu, J. S., Global stability of a linear nonautonomous delay difference equations, J. Difference Equ. Appl., 1(2) (1995), 151161.

    • Search Google Scholar
    • Export Citation
  • [16]

    Fang, H. and Zhao, D. P., Existence of nontrivial homoclinic orbits for fourthorder difference equations, Appl. Math. Comput., 214(1) (2009), 163170.

    • Search Google Scholar
    • Export Citation
  • [17]

    Guo, C. J., O’Regan, D. and Agarwal, R. P., Existence of multiple periodic solutions for a class of first-order neutral differential equations, Appl. Anal. Discrete Math., 5(1) (2011), 147158.

    • Search Google Scholar
    • Export Citation
  • [18]

    Guo, C. J., O’Regan, D., Xu, Y. T. and Agarwal, R. P., Existence of homoclinic orbits of a class of second order differential difference equations, Dyn. Contin. Discrete Impuls. Syst. Ser. B Appl. Algorithms, 20(6) (2013), 675690.

    • Search Google Scholar
    • Export Citation
  • [19]

    Guo, C. J., O’Regan, D., Xu, Y. T. and Agarwal, R. P., Existence of infinite periodic solutions for a class of first-order delay differential equations, Funct. Differ. Equ., 19 (2012), 115123.

    • Search Google Scholar
    • Export Citation
  • [20]

    Guo, C. J., O’Regan, D., Xu, Y. T. and Agarwal, R. P., Existence and multiplicity of homoclinic orbits of a second-order differential difference equation via variational methods, Appl. Math. Inform. Mech., 4(1) (2012), 115.

    • Search Google Scholar
    • Export Citation
  • [21]

    Guo, C. J. and Xu, Y. T., Existence of periodic solutions for a class of second order differential equation with deviating argument, J. Appl. Math. Comput., 28(1–2) (2008), 425433.

    • Search Google Scholar
    • Export Citation
  • [22]

    Guo, Z. M. and Yu, J. S., Applications of critical point theory to difference equations, Fields Inst. Commun., 42 (2004), 187200.

  • [23]

    Guo, Z. M. and Yu, J. S., Existence of periodic and subharmonic solutions for second-order superlinear difference equations, Sci. China Math, 46(4) (2003), 506515.

    • Search Google Scholar
    • Export Citation
  • [24]

    Guo, Z. M. and Yu, J. S., The existence of periodic and subharmonic solutions of subquadratic second order difference equations, J. London Math. Soc., 68(2) (2003), 419430.

    • Search Google Scholar
    • Export Citation
  • [25]

    He, Z. M., On the existence of positive solutions of p-Laplacian difference equations, J. Comput. Appl. Math., 161(1) (2003), 193201.

    • Search Google Scholar
    • Export Citation
  • [26]

    Jiang, D., Chu, J., O’Regan, D. and Agarwal, R. P., Positive solutions for continuous and discrete boundary value problems to the one-dimension pLaplacian, Math. Inequal. Appl., 7(4) (2004), 523534.

    • Search Google Scholar
    • Export Citation
  • [27]

    Kocic, V. L. and Ladas, G., Global Behavior of Nonlinear Difference Equations of Higher Order with Applications, Kluwer Academic Publishers, Dordrecht (1993).

    • Search Google Scholar
    • Export Citation
  • [28]

    Li, Y. and Lu, L., Existence of positive solutions of p-Laplacian difference equations, Appl. Math. Lett., 19(10) (2006), 10191023.

  • [29]

    Liu, Y. J. and Ge, W. G., Twin positive solutions of boundary value problems for finite difference equations with p-Laplacian operator, J. Math. Anal. Appl., 278(2) (2003), 551561.

    • Search Google Scholar
    • Export Citation
  • [30]

    Matsunaga, H., Hara, T. and Sakata, S., Global attractivity for a nonlinear difference equation with variable delay, Computers Math. Appl., 41(5–6) (2001), 543551.

    • Search Google Scholar
    • Export Citation
  • [31]

    Mawhin, J. and Willem, M., Critical Point Theory and Hamiltonian Systems, Springer, New York (1989).

  • [32]

    Mickens, R. E., Difference Equations: Theory and Application, Van Nostrand Reinhold, New York (1990).

  • [33]

    Pankov, A. and Zakhrchenko, N., On some discrete variational problems, Acta Appl. Math., 65(1–3) (2001), 295303.

  • [34]

    Peterson, A. and Ridenhour, J., The (2, 2)-disconjugacy of a fourth order difference equation, J. Difference Equ. Appl., 1(1) (1995), 8793.

    • Search Google Scholar
    • Export Citation
  • [35]

    Popenda, J. and Schmeidel, E., On the solutions of fourth order difference equations, Rocky Mountazn J. Math., 25(4) (1995), 14851499.

    • Search Google Scholar
    • Export Citation
  • [36]

    Rabinowitz, P. H., Minimax Methods in Critical Point Theory with Applications to Differential Equations, Amer. Math. Soc., Providence, RI, New York (1986).

    • Search Google Scholar
    • Export Citation
  • [37]

    Shi, H. P., Ling, W. P., Long, Y. H. and Zhang, H. Q., Periodic and subharmonic solutions for second order nonlinear functional difference equations, Commun. Math. Anal., 5(2) (2008), 5059.

    • Search Google Scholar
    • Export Citation
  • [38]

    Smets, D. and Willem, M., Solitary waves with prescribed speed on infinite lattices, J. Funct. Anal., 149(1) (1997), 266275.

  • [39]

    Thandapani, E. and Arockiasamy, I. M., Fourth-order nonlinear oscillations of difference equations, Comput. Math. Appl., 42(3–5) (2001), 357368.

    • Search Google Scholar
    • Export Citation
  • [40]

    Tian, Y., Du, Z. J. and Ge, W. G., Existence results for discrete Sturm-Liuville problem via variational methods, J. Difference Equ. Appl., 13(6) (2007), 467478.

    • Search Google Scholar
    • Export Citation
  • [41]

    Tian, Y. and Ge, W. G., The existence of solutions for a second-order discrete Neumann problem with a p-Laplacian, J. Appl. Math. Comput., 26(1–2) (2008), 333340.

    • Search Google Scholar
    • Export Citation
  • [42]

    Yan, J. and Liu, B., Oscillatory and asymptotic behavior of fourth order nonlinear difference equations, Acta. Math. Sinica, 13(1) (1997), 105115.

    • Search Google Scholar
    • Export Citation
  • [43]

    Yu, J. S. and Guo, Z. M., On boundary value problems for a discrete generalized Emden-Fowler equation, J. Differential Equations, 231(1) (2006), 1831.

    • Search Google Scholar
    • Export Citation
  • [44]

    Yu, J. S., Long, Y. H. and Guo, Z. M., Subharmonic solutions with prescribed minimal period of a discrete forced pendulum equation, J. Dynam. Differential Equations, 16(2) (2004), 575586.

    • Search Google Scholar
    • Export Citation
  • [45]

    Zhou, Z., Yu, J. S. and Chen, Y. M., Homoclinic solutions in periodic difference equations with saturable nonlinearity, Sci. China Math, 54(1) (2011), 8393.

    • Search Google Scholar
    • Export Citation
  • [46]

    Zhou, Z., Yu, J. S. and Guo, Z. M., Periodic solutions of higher-dimensional discrete systems, Proc. Roy. Soc. Edinburgh (Section A), 134(5) (2004), 10131022.

    • Search Google Scholar
    • Export Citation
  • [47]

    Zhou, Z. and Zhang, Q., Uniform stability of nonlinear difference systems, J. Math. Anal. Appl., 225(2) (1998), 486500.