View More View Less
  • 1 İnönü Üniversitesi, A-Blok, Malatya, 44280, Turkey
  • 2 İnönü Üniversitesi, Malatya, 44280,, Turkey
Restricted access

Purchase article

USD  $25.00

1 year subscription (Individual Only)

USD  $800.00

In this paper, using a Darbo type fixed point theorem associated with the measure of noncompactness we prove a theorem on the existence of solutions of some nonlinear functional integral equations in the space of continuous functions on interval [0, a]. We give also some examples which show that the obtained results are applicable

  • [1]

    Hu, S., Khavanin, M. and Zhuang, W., Integral equations arising in the kinetic theory of gases, Appl. Anal., 34 (1989), 261266.

  • [2]

    Argyros, I. K., Quadratic equations and applications to Chandrasekhar’s and related equations, Bull. Austral. Math. Soc., 32 (1985), 275292.

    • Search Google Scholar
    • Export Citation
  • [3]

    Burton, T. A., Integral equations, implicit functions and fixed points, Proc. Amer. Math. Soc., 124(8) (1996), 23832390.

  • [4]

    Liu, Z. and Kang, S. M., Existence of monoton solutions for a nonlinear quadratic integral equation of Volterra type, Rocky Mountain J. Math., 37(6) (2007), 19711980.

    • Search Google Scholar
    • Export Citation
  • [5]

    Özdemir, İ., Çakan, Ü. and İlhan, B., On the existence of the solutions for some nonlinear Volterra integral equations, Abstr. Appl. Anal., 2013, 2013, Article ID 689234, 5 pages.

    • Search Google Scholar
    • Export Citation
  • [6]

    Çakan, Ü. and Özdemir, İ., An application of the measure of noncompactness to some nonlinear functional integral equations in C[0, a], Adv. Math. Sci. Appl., 23(2) (2013), 575584.

    • Search Google Scholar
    • Export Citation
  • [7]

    Banás, J., Caballero, J., López, B. and Sadarangani, K., Solutions of a functional integral equation in BC(R+), International Mathematical Forum, 1(24) (2006), 11811194.

    • Search Google Scholar
    • Export Citation
  • [8]

    Maleknejad, K., Nouri, K. and Mollapourasl, R., Existence of solutions for some nonlinear integral equations, Commun. Nonlinear Sci. Numer. Simul., 14 (2009), 25592564.

    • Search Google Scholar
    • Export Citation
  • [9]

    Özdemir, İ. and Çakan, Ü., On the solutions of a class of nonlinear functional integral equations in space C[0, a], J. Math. Appl., 38 (2015), 115124.

    • Search Google Scholar
    • Export Citation
  • [10]

    Dhage, B. C. and Lakshmikantham, V., On global existence and attractivity results for nonlinear functional integral equations, Nonlinear Anal., 72(5) (2010), 22192227.

    • Search Google Scholar
    • Export Citation
  • [11]

    Dhage, B. C., Attractivity and positivity results for nonlinear functional integral equations via measure of noncompactness, Differ. Equ. Appl., 2(3) (2010), 299318.

    • Search Google Scholar
    • Export Citation
  • [12]

    Banás, J., Balachandran, K. and Julie, D., Existence and global attractivity of solutions of a nonlinear functional integral equation, Appl. Math. Comput., 216 (2010), 261268.

    • Search Google Scholar
    • Export Citation
  • [13]

    Banás, J. and Sadarangani, K., Compactness conditions in the study of functional, differential and integral equations, Abstr. Appl. Anal., 2013 (2013), Article ID 819315, 14 pages.

    • Search Google Scholar
    • Export Citation
  • [14]

    Çakan, Ü. and Özdemir, İ., An application of Darbo fixed point theorem to a class of functional integral equations, Numer. Funct. Anal. Optim., 36(1) (2015), 2940.

    • Search Google Scholar
    • Export Citation
  • [15]

    Banás, J. and Goebel, K., Measures of noncompactness in Banach space, Lecture Notes in Pure and Applied Mathematics, 60 (1980), New York, Dekker.

    • Search Google Scholar
    • Export Citation