View More View Less
  • 1 University of Niš, P.O. Box 224, 18000 Niš, Serbia
Restricted access

Purchase article

USD  $25.00

1 year subscription (Individual Only)

USD  $800.00

We investigate some equivalent conditions for the reverse order laws (ab)# = b a # and (ab)# = b # a in rings with involution. Similar results for (ab)# = b # a* and (ab)# = b*a # are presented too.

  • 1

    Ben-Israel, A. and Greville, T. N. E., Generalized Inverses: Theory and Applications, 2nd ed., Springer, New York, 2003.

  • 2

    Cao, C., Zhang, X. and Tang, X., Reverse order law of group inverses of products of two matrices, Appl. Math. Comput., 158 (2004), 489495.

    • Search Google Scholar
    • Export Citation
  • 3

    Deng, C. Y., Reverse order law for the group inverses, J. Math. Anal. Appl., 382(2) (2011), 663671.

  • 4

    Djordjević, D. S., Unified approach to the reverse order rule for generalized inverses, Acta Sci. Math. (Szeged), 67 (2001), 761776.

    • Search Google Scholar
    • Export Citation
  • 5

    Greville, T. N. E., Note on the generalized inverse of a matrix product, SIAM Rev., 8 (1966), 518521.

  • 6

    Izumino, S., The product of operators with closed range and an extension of the reverse order law, Tohoku Math. J., 34 (1982), 4352.

    • Search Google Scholar
    • Export Citation
  • 7

    Hartwig, R. E. and Shoaf, J., Group inverses and Drazin inverses of bidiagonal and triangular Toeplitz matrices, J. Austral. Math. Soc., 24(A) (1977), 1034.

    • Search Google Scholar
    • Export Citation
  • 8

    Koliha, J. J. and Patrício, P., Elements of rings with equal spectral idempotents, J. Australian Math. Soc. 72 (2002), 137152.

  • 9

    Penrose, R., A generalized inverse for matrices, Proc. Cambridge Philos. Soc., 51 (1955), 406413.