View More View Less
  • 1 The University of British Columbia, Vancouver, B.C. Canada V6T 1Z2, Hungary
  • 2 MTA Alfréd Rényi Institute of Mathematics, Budapest, Hungary
Restricted access

Purchase article

USD  $25.00

1 year subscription (Individual Only)

USD  $800.00

Let forb(m, F) denote the maximum number of columns possible in a (0, 1)-matrix A that has no repeated columns and has no submatrix which is a row and column permutation of F. We consider cases where the configuration F has a number of columns that grows with m. For a k × l matrix G, define s · G to be the concatenation of s copies of G. In a number of cases we determine forb(m, mα · G) is Θ(mk). Results of Keevash on the existence of designs provide constructions that can be used to give asymptotic lower bounds. An induction idea of Anstee and Lu is useful in obtaining upper bounds.

  • 1

    Anstee, R. P. and Lu, Linyuan, Repeated columns and an old chestnut, Elec. J. of Combinatorics, 20 (2013), P2, 11pp.

  • 2

    Anstee, R. P., A Survey of forbidden configurations results, Elec. J. of Combinatorics, 20 (2013), DS20, 56pp.

  • 3

    Anstee, R. P., Barekat, F. and Sali, A., Small Forbidden Configurations V: Exact Bounds for 4x2 cases, Studia Sci. Math. Hun., 48 (2011), 122.

    • Search Google Scholar
    • Export Citation
  • 4

    Anstee, R. P. and Fleming, B., Two refinements of the bound of Sauer, Perles and Shelah and Vapnik and Chervonenkis, Discrete Mathematics, 310 (2010), 33183323.

    • Search Google Scholar
    • Export Citation
  • 5

    Anstee, R. P. and Fleming, B., Linear algebra methods for forbidden configurations, Combinatorica, 31 (2011), 119.

  • 6

    Anstee, R. P., Füredi, Z., Fleming, B. and Sali, A., Color critical hypergraphs and forbidden configurations. Discrete Matheatics and Theoretical Computer Science, AE (2005), 117122.

    • Search Google Scholar
    • Export Citation
  • 7

    Anstee, R. P., A forbidden configuration theorem of Alon, J. Combin. Theory Ser AMath., 47 (1988), 1627.

  • 8

    Anstee, R. P., Raggi, M. and Sali, A., Forbidden Configurations: Boundary Cases, European J. Combin, 35 (2014), 5166.

  • 9

    Balogh, J. and Bollobás, B., Unavoidable Traces of Set Systems, Combinatorica, 25 (2005), 633643.

  • 10

    Baranyai, Zs., On the factorization of the complete uniform hypergraph, Infinite and Finite Sets, Proc. Coll. Keszthely, 1973, Hajnal, A.; Rado, R.; Sós, V. T., eds., Colloquia Math. Soc. János Bolyai 10, North-Holland, pp. 91107.

    • Search Google Scholar
    • Export Citation
  • 11

    Dehon, Michel, On the existence of 2-designs S(2, 3, v) without repeated blocks, Discrete Math., 43 (1983), 155171.

  • 12

    Frankl, P., Füredi, Z. and Pach, J., Bounding one-way differences, Graphs and Combinatorics, 3 (1987), 341347.

  • 13

    Keevash, P., The Existence of Designs, ArXiv: 1401.3665

  • 14

    Sauer, N., On the density of families of sets, J. Combin. Th. Ser A, 13 (1972), 145147.

  • 15

    Shelah, S., A combinatorial problem: Stability and order for models and theories in infinitary languages, Pac. J. Math., 4 (1972), 247261.

    • Search Google Scholar
    • Export Citation
  • 16

    Vapnik, V. N. and Chervonenkis, A. Ya., On the uniform convergence of relative frequencies of events to their probabilities, Th. Prob. and Applics., 16 (1971), 264280.

    • Search Google Scholar
    • Export Citation