View More View Less
  • 1 Matematik Bölümü, Malatya, 44280, Turkey
  • 2 Eğitim Fakültesi, A-Blok, Malatya, 44280, Turkey
Restricted access

Purchase article

USD  $25.00

1 year subscription (Individual Only)

USD  $800.00

In this paper, using a Darbo type fixed point theorem associated with the measure of noncompactness we prove a theorem on the existence of asymptotically stable solutions of some nonlinear functional integral equations in the space of continuous and bounded functions on R+ = [0,∞). We also give some examples satisfying the conditions our existence theorem.

  • 1

    Hu, S., Khavanin, M. and Zhuang, W., Integral equations arising in the kinetic theory of gases, Appl. Anal., 34 (1989), 261266.

  • 2

    Torvik, P. J. and Bagley, R. L., On the appearance of the fractional derivative in the behavior of real materials, J. Appl. Mech., 51 (1984), 294298.

    • Search Google Scholar
    • Export Citation
  • 3

    Freed, A. D., Diethelm, K. and Luchko, Y., Fractional-order viscoelasticity (FOV): Constitutive developments using the fractional calculus: First annual report, Technical Memorandum, TM-2002-211914, NASA Glenn Research Center, Cleveland, 2002.

    • Search Google Scholar
    • Export Citation
  • 4

    Agarwal, R. P., Benchohra, M. and Seba, D., On the application of measure of noncompactness to existence of solutions for fractional differential equations, Results Math., 55 (2009), 221230.

    • Search Google Scholar
    • Export Citation
  • 5

    Heinz, H. P., On the behaviour of measures of noncompactness with respect to differentiation and integration of vector-valued functions, Nonlinear Anal., 7(12) (1983), 13511371.

    • Search Google Scholar
    • Export Citation
  • 6

    Olszowy, L., On some measures of noncompactness in the Fréchet spaces of continuous functions, Nonlinear Anal., 71 (2009), 51575163.

    • Search Google Scholar
    • Export Citation
  • 7

    García-Falset, J., Existence of fixed points and measures of weak noncompactness, Nonlinear Anal., 71 (2009), 26252633.

  • 8

    Banaś, J. and Sadarangani, K., On some measures of noncompactness in the space of continuous functions, Nonlinear Anal., 68 (2008), 377383.

    • Search Google Scholar
    • Export Citation
  • 9

    Banaś, J. and Goebel, K., Measures of noncompactness in Banach space. Lecture Notes in Pure and Applied Mathematics, 60, New York, Dekker, 1980.

    • Search Google Scholar
    • Export Citation
  • 10

    Banaś, J. and Cabrera, I. J., On existence and asymptotic behaviour of solutions of a functional integral equation, Nonlinear Anal., 66 (2007), 22462254.

    • Search Google Scholar
    • Export Citation
  • 11

    Banaś, J. and Dhage, B. C., Global asymptotic stability of solutions of a functional integral equation, Nonlinear Anal., 69 (2008), 19451952.

    • Search Google Scholar
    • Export Citation
  • 12

    Banaś, J. and O’Regan, D., On existence and local attractivity of solutions of a quadratic Volterra integral equation of fractional order, J. Math. Anal. Appl., 345 (2008), 573582.

    • Search Google Scholar
    • Export Citation
  • 13

    Banaś, J. and Chlebowicz, A., On existence of integrable solutions of a functional integral equation under Carathéodory conditions, Nonlinear Anal., 70 (2009), 31723179.

    • Search Google Scholar
    • Export Citation
  • 14

    Dhage, B. C. and Lakshmikantham, V., On global existence and attractivity results for nonlinear functional integral equations, Nonlinear Anal., 72 (2010), 2219-2227.

    • Search Google Scholar
    • Export Citation
  • 15

    Balachandran, K., Park, J. Y. and Julie, M. D., On local attractivity of solutions of a functional integral equation of fractional order with deviating arguments, Commun. Nonlinear Sci. Numer. Simul., 15 (2010), 28092817.

    • Search Google Scholar
    • Export Citation
  • 16

    Olszowy, L., Nondecreasing solutions of a quadratic integral equations of Urysohn type on unbounded interval, J. Convex Anal., 18(2) (2011), 455464.

    • Search Google Scholar
    • Export Citation
  • 17

    Banaś, J. and Rzepka, B., Monotonic solutions of a quadratic integral equation of fractional order, J. Math. Anal. Appl., 332 (2007), 13711379.

    • Search Google Scholar
    • Export Citation
  • 18

    Banaś, J. and O’Regan, D., On existence and local attractivity of solutions of a quadratic Volterra integral equation of fractional order, J. Math. Anal. Appl., 345 (2008), 573582.

    • Search Google Scholar
    • Export Citation
  • 19

    Banaś, J. and Zajaç, T., Solvability of a functional integral equation of fractional order in the class of functions having limits at infinity, Nonlinear Anal., 71 (2009), 54915500.

    • Search Google Scholar
    • Export Citation
  • 20

    Banaś, J. and Olszowy, L., On a class of measures of noncompactness in Banach algebras and their application to nonlinear integral equations, J. Appl. Anal., 28 (2009), 124.

    • Search Google Scholar
    • Export Citation
  • 21

    Banaś, J., Measures of noncompactness in the study of solutions of nonlinear differential and integral equations, Cent. Eur. J. Math., 10(6) (2012), 2003-2011.

    • Search Google Scholar
    • Export Citation
  • 22

    Darwish, M. A., On quadratic integral equation of fractional orders, J. Math. Anal. Appl., 311 (2005), 112119.

  • 23

    Darwish, M. A. and Henderson, J., Existence and asymptotic stability of solutions of a perturbed quadratic fractional integral equation, Fract. Calc. Appl. Anal., 12(1) (2009), 7186.

    • Search Google Scholar
    • Export Citation
  • 24

    Darwish, M. A., On monotonic solutions of an integral equation of Abel type, Math. Bohem., 133(4) (2008), 407420.

  • 25

    Darwish, M. A., On existence and asymptotic behaviour of solutions of a fractional integral equation, Appl. Anal., 88(2) (2009), 169181.

    • Search Google Scholar
    • Export Citation
  • 26

    Darwish, M. A. and Ntouyas, S. K., On a quadratic fractional Hammerstein–Volterra integral equation with linear modification of the argument, Nonlinear Anal., 74 (2011), 35103517.

    • Search Google Scholar
    • Export Citation
  • 27

    Darwish, M. A., On a perturbed quadratic fractional integral equation of Abel type, Comput. Math. Applic., 61 (2011), 182190.

  • 28

    Darwish, M. A., Nondecreasing solutions of a fractional quadratic integral equation of Abel type, Dynam. Systems Appl., 20 (2011), 423438.

    • Search Google Scholar
    • Export Citation
  • 29

    Özdemİr, İ, çakan, Ü. and İlhan, B., On the existence of the solutions for some nonlinear Volterra integral equations, Abstr. Appl. Anal., 2013 (2013), Article ID 698234, 5 pages.

    • Search Google Scholar
    • Export Citation
  • 30

    çakan, Ü. and Özdemćr, İ, An application of the measure of noncompactness to some nonlinear functional integral equations in space C[0, a], Adv. Math. Sci. Appl., 23-2 (2013), 575584.

    • Search Google Scholar
    • Export Citation
  • 31

    Özdemİ r, İ and çakan, Ü., On the solutions of a class of nonlinear functional integral equations in space C[0, a], J. Math. Appl., 38 (2015), 115124.

    • Search Google Scholar
    • Export Citation
  • 32

    çakan, Ü. and Özdemİr, İ, An application of Darbo fixed point theorem to a class of functional integral equations, Numer. Funct. Anal. Optim., 36(1) (2015), 2940.

    • Search Google Scholar
    • Export Citation
  • 33

    Banaś, J., Balachandran, K. and Julie, D., Existence and global attractivity of solutions of a nonlinear functional integral equation, Appl. Math. Comput., 216 (2010), 261268.

    • Search Google Scholar
    • Export Citation
  • 34

    Banaś, J. and Sadarangani, K., Compactness conditions in the study of functional, differential and integral equations, Abstr. Appl. Anal., 2013 (2013), Article ID 819315, 14 pages.

    • Search Google Scholar
    • Export Citation
  • 35

    Özdemİr, İ and çakan, Ü., The solvability of some nonlinear functional integral equations, Studia Sci. Math. Hungar., 53(1) (2016), 721.

    • Search Google Scholar
    • Export Citation
  • 36

    çakan, Ü. and Özdemİr, İ, Existence of nondecreasing solutions of some nonlinear integral equations of fractional order, J. Nonlinear Sci. Appl., 8(6) (2015), 11121126.

    • Search Google Scholar
    • Export Citation
  • 37

    Phollakrit, T., Ntouyas, S. K. and Tariboon, J., Existence of solutions for Riemann-Liouville fractional differential equations with nonlocal Erdélyi- Kober integral boundary conditions on the half-line, Bound. Value Probl., 2015 (2015), 115.

    • Search Google Scholar
    • Export Citation
  • 38

    Banaś, J. and Dhage, B. C., Global asymptotic stability of solutions of a functional integral equation, Nonlinear Anal., 69 (2008), 19451952.

    • Search Google Scholar
    • Export Citation
  • 39

    Banaś, J., Rocha, J. and Sadarangani, K. B., Solvability of a nonlinear integral equation of Volterra type, J. Comput. Appl. Math., 157 (2003), 3148.

    • Search Google Scholar
    • Export Citation