View More View Less
  • 1 Matematik Bölümü, Malatya, 44280, Turkey
  • | 2 Eğitim Fakültesi, A-Blok, Malatya, 44280, Turkey
Restricted access

Purchase article

USD  $25.00

1 year subscription (Individual Only)

USD  $800.00

In this paper, using a Darbo type fixed point theorem associated with the measure of noncompactness we prove a theorem on the existence of asymptotically stable solutions of some nonlinear functional integral equations in the space of continuous and bounded functions on R+ = [0,∞). We also give some examples satisfying the conditions our existence theorem.

  • 1

    Hu, S., Khavanin, M. and Zhuang, W., Integral equations arising in the kinetic theory of gases, Appl. Anal., 34 (1989), 261266.

  • 2

    Torvik, P. J. and Bagley, R. L., On the appearance of the fractional derivative in the behavior of real materials, J. Appl. Mech., 51 (1984), 294298.

    • Search Google Scholar
    • Export Citation
  • 3

    Freed, A. D., Diethelm, K. and Luchko, Y., Fractional-order viscoelasticity (FOV): Constitutive developments using the fractional calculus: First annual report, Technical Memorandum, TM-2002-211914, NASA Glenn Research Center, Cleveland, 2002.

    • Search Google Scholar
    • Export Citation
  • 4

    Agarwal, R. P., Benchohra, M. and Seba, D., On the application of measure of noncompactness to existence of solutions for fractional differential equations, Results Math., 55 (2009), 221230.

    • Search Google Scholar
    • Export Citation
  • 5

    Heinz, H. P., On the behaviour of measures of noncompactness with respect to differentiation and integration of vector-valued functions, Nonlinear Anal., 7(12) (1983), 13511371.

    • Search Google Scholar
    • Export Citation
  • 6

    Olszowy, L., On some measures of noncompactness in the Fréchet spaces of continuous functions, Nonlinear Anal., 71 (2009), 51575163.

    • Search Google Scholar
    • Export Citation
  • 7

    García-Falset, J., Existence of fixed points and measures of weak noncompactness, Nonlinear Anal., 71 (2009), 26252633.

  • 8

    Banaś, J. and Sadarangani, K., On some measures of noncompactness in the space of continuous functions, Nonlinear Anal., 68 (2008), 377383.

    • Search Google Scholar
    • Export Citation
  • 9

    Banaś, J. and Goebel, K., Measures of noncompactness in Banach space. Lecture Notes in Pure and Applied Mathematics, 60, New York, Dekker, 1980.

    • Search Google Scholar
    • Export Citation
  • 10

    Banaś, J. and Cabrera, I. J., On existence and asymptotic behaviour of solutions of a functional integral equation, Nonlinear Anal., 66 (2007), 22462254.

    • Search Google Scholar
    • Export Citation
  • 11

    Banaś, J. and Dhage, B. C., Global asymptotic stability of solutions of a functional integral equation, Nonlinear Anal., 69 (2008), 19451952.

    • Search Google Scholar
    • Export Citation
  • 12

    Banaś, J. and O’Regan, D., On existence and local attractivity of solutions of a quadratic Volterra integral equation of fractional order, J. Math. Anal. Appl., 345 (2008), 573582.

    • Search Google Scholar
    • Export Citation
  • 13

    Banaś, J. and Chlebowicz, A., On existence of integrable solutions of a functional integral equation under Carathéodory conditions, Nonlinear Anal., 70 (2009), 31723179.

    • Search Google Scholar
    • Export Citation
  • 14

    Dhage, B. C. and Lakshmikantham, V., On global existence and attractivity results for nonlinear functional integral equations, Nonlinear Anal., 72 (2010), 2219-2227.

    • Search Google Scholar
    • Export Citation
  • 15

    Balachandran, K., Park, J. Y. and Julie, M. D., On local attractivity of solutions of a functional integral equation of fractional order with deviating arguments, Commun. Nonlinear Sci. Numer. Simul., 15 (2010), 28092817.

    • Search Google Scholar
    • Export Citation
  • 16

    Olszowy, L., Nondecreasing solutions of a quadratic integral equations of Urysohn type on unbounded interval, J. Convex Anal., 18(2) (2011), 455464.

    • Search Google Scholar
    • Export Citation
  • 17

    Banaś, J. and Rzepka, B., Monotonic solutions of a quadratic integral equation of fractional order, J. Math. Anal. Appl., 332 (2007), 13711379.

    • Search Google Scholar
    • Export Citation
  • 18

    Banaś, J. and O’Regan, D., On existence and local attractivity of solutions of a quadratic Volterra integral equation of fractional order, J. Math. Anal. Appl., 345 (2008), 573582.

    • Search Google Scholar
    • Export Citation
  • 19

    Banaś, J. and Zajaç, T., Solvability of a functional integral equation of fractional order in the class of functions having limits at infinity, Nonlinear Anal., 71 (2009), 54915500.

    • Search Google Scholar
    • Export Citation
  • 20

    Banaś, J. and Olszowy, L., On a class of measures of noncompactness in Banach algebras and their application to nonlinear integral equations, J. Appl. Anal., 28 (2009), 124.

    • Search Google Scholar
    • Export Citation
  • 21

    Banaś, J., Measures of noncompactness in the study of solutions of nonlinear differential and integral equations, Cent. Eur. J. Math., 10(6) (2012), 2003-2011.

    • Search Google Scholar
    • Export Citation
  • 22

    Darwish, M. A., On quadratic integral equation of fractional orders, J. Math. Anal. Appl., 311 (2005), 112119.

  • 23

    Darwish, M. A. and Henderson, J., Existence and asymptotic stability of solutions of a perturbed quadratic fractional integral equation, Fract. Calc. Appl. Anal., 12(1) (2009), 7186.

    • Search Google Scholar
    • Export Citation
  • 24

    Darwish, M. A., On monotonic solutions of an integral equation of Abel type, Math. Bohem., 133(4) (2008), 407420.

  • 25

    Darwish, M. A., On existence and asymptotic behaviour of solutions of a fractional integral equation, Appl. Anal., 88(2) (2009), 169181.

    • Search Google Scholar
    • Export Citation
  • 26

    Darwish, M. A. and Ntouyas, S. K., On a quadratic fractional Hammerstein–Volterra integral equation with linear modification of the argument, Nonlinear Anal., 74 (2011), 35103517.

    • Search Google Scholar
    • Export Citation
  • 27

    Darwish, M. A., On a perturbed quadratic fractional integral equation of Abel type, Comput. Math. Applic., 61 (2011), 182190.

  • 28

    Darwish, M. A., Nondecreasing solutions of a fractional quadratic integral equation of Abel type, Dynam. Systems Appl., 20 (2011), 423438.

    • Search Google Scholar
    • Export Citation
  • 29

    Özdemİr, İ, çakan, Ü. and İlhan, B., On the existence of the solutions for some nonlinear Volterra integral equations, Abstr. Appl. Anal., 2013 (2013), Article ID 698234, 5 pages.

    • Search Google Scholar
    • Export Citation
  • 30

    çakan, Ü. and Özdemćr, İ, An application of the measure of noncompactness to some nonlinear functional integral equations in space C[0, a], Adv. Math. Sci. Appl., 23-2 (2013), 575584.

    • Search Google Scholar
    • Export Citation
  • 31

    Özdemİ r, İ and çakan, Ü., On the solutions of a class of nonlinear functional integral equations in space C[0, a], J. Math. Appl., 38 (2015), 115124.

    • Search Google Scholar
    • Export Citation
  • 32

    çakan, Ü. and Özdemİr, İ, An application of Darbo fixed point theorem to a class of functional integral equations, Numer. Funct. Anal. Optim., 36(1) (2015), 2940.

    • Search Google Scholar
    • Export Citation
  • 33

    Banaś, J., Balachandran, K. and Julie, D., Existence and global attractivity of solutions of a nonlinear functional integral equation, Appl. Math. Comput., 216 (2010), 261268.

    • Search Google Scholar
    • Export Citation
  • 34

    Banaś, J. and Sadarangani, K., Compactness conditions in the study of functional, differential and integral equations, Abstr. Appl. Anal., 2013 (2013), Article ID 819315, 14 pages.

    • Search Google Scholar
    • Export Citation
  • 35

    Özdemİr, İ and çakan, Ü., The solvability of some nonlinear functional integral equations, Studia Sci. Math. Hungar., 53(1) (2016), 721.

    • Search Google Scholar
    • Export Citation
  • 36

    çakan, Ü. and Özdemİr, İ, Existence of nondecreasing solutions of some nonlinear integral equations of fractional order, J. Nonlinear Sci. Appl., 8(6) (2015), 11121126.

    • Search Google Scholar
    • Export Citation
  • 37

    Phollakrit, T., Ntouyas, S. K. and Tariboon, J., Existence of solutions for Riemann-Liouville fractional differential equations with nonlocal Erdélyi- Kober integral boundary conditions on the half-line, Bound. Value Probl., 2015 (2015), 115.

    • Search Google Scholar
    • Export Citation
  • 38

    Banaś, J. and Dhage, B. C., Global asymptotic stability of solutions of a functional integral equation, Nonlinear Anal., 69 (2008), 19451952.

    • Search Google Scholar
    • Export Citation
  • 39

    Banaś, J., Rocha, J. and Sadarangani, K. B., Solvability of a nonlinear integral equation of Volterra type, J. Comput. Appl. Math., 157 (2003), 3148.

    • Search Google Scholar
    • Export Citation

Editors in Chief

Gábor SIMONYI (Rényi Institute of Mathematics)
András STIPSICZ (Rényi Institute of Mathematics)
Géza TÓTH (Rényi Institute of Mathematics) 

Managing Editor

Gábor SÁGI (Rényi Institute of Mathematics)

Editorial Board

  • Imre BÁRÁNY (Rényi Institute of Mathematics)
  • Károly BÖRÖCZKY (Rényi Institute of Mathematics and Central European University)
  • Péter CSIKVÁRI (ELTE, Budapest) 
  • Joshua GREENE (Boston College)
  • Penny HAXELL (University of Waterloo)
  • Andreas HOLMSEN (Korea Advanced Institute of Science and Technology)
  • Ron HOLZMAN (Technion, Haifa)
  • Satoru IWATA (University of Tokyo)
  • Tibor JORDÁN (ELTE, Budapest)
  • Roy MESHULAM (Technion, Haifa)
  • Frédéric MEUNIER (École des Ponts ParisTech)
  • Márton NASZÓDI (ELTE, Budapest)
  • Eran NEVO (Hebrew University of Jerusalem)
  • János PACH (Rényi Institute of Mathematics)
  • Péter Pál PACH (BME, Budapest)
  • Andrew SUK (University of California, San Diego)
  • Zoltán SZABÓ (Princeton University)
  • Martin TANCER (Charles University, Prague)
  • Gábor TARDOS (Rényi Institute of Mathematics)
  • Paul WOLLAN (University of Rome "La Sapienza")

STUDIA SCIENTIARUM MATHEMATICARUM HUNGARICA
Gábor Sági
Address: P.O. Box 127, H–1364 Budapest, Hungary
Phone: (36 1) 483 8344 ---- Fax: (36 1) 483 8333
E-mail: smh.studia@renyi.mta.hu

Indexing and Abstracting Services:

  • CompuMath Citation Index
  • Essential Science Indicators
  • Mathematical Reviews
  • Science Citation Index Expanded (SciSearch)
  • SCOPUS
  • Zentralblatt MATH
2020  
Total Cites 536
WoS
Journal
Impact Factor
0,855
Rank by Mathematics 189/330 (Q3)
Impact Factor  
Impact Factor 0,826
without
Journal Self Cites
5 Year 1,703
Impact Factor
Journal  0,68
Citation Indicator  
Rank by Journal  Mathematics 230/470 (Q2)
Citation Indicator   
Citable 32
Items
Total 32
Articles
Total 0
Reviews
Scimago 24
H-index
Scimago 0,307
Journal Rank
Scimago Mathematics (miscellaneous) Q3
Quartile Score  
Scopus 139/130=1,1
Scite Score  
Scopus General Mathematics 204/378 (Q3)
Scite Score Rank  
Scopus 1,069
SNIP  
Days from  85
sumbission  
to acceptance  
Days from  123
acceptance  
to publication  
Acceptance 16%
Rate

2019  
Total Cites
WoS
463
Impact Factor 0,468
Impact Factor
without
Journal Self Cites
0,468
5 Year
Impact Factor
0,413
Immediacy
Index
0,135
Citable
Items
37
Total
Articles
37
Total
Reviews
0
Cited
Half-Life
21,4
Citing
Half-Life
15,5
Eigenfactor
Score
0,00039
Article Influence
Score
0,196
% Articles
in
Citable Items
100,00
Normalized
Eigenfactor
0,04841
Average
IF
Percentile
13,117
Scimago
H-index
23
Scimago
Journal Rank
0,234
Scopus
Scite Score
76/104=0,7
Scopus
Scite Score Rank
General Mathematics 247/368 (Q3)
Scopus
SNIP
0,671
Acceptance
Rate
14%

 

Studia Scientiarum Mathematicarum Hungarica
Publication Model Hybrid
Submission Fee none
Article Processing Charge 900 EUR/article
Printed Color Illustrations 40 EUR (or 10 000 HUF) + VAT / piece
Regional discounts on country of the funding agency World Bank Lower-middle-income economies: 50%
World Bank Low-income economies: 100%
Further Discounts Editorial Board / Advisory Board members: 50%
Corresponding authors, affiliated to an EISZ member institution subscribing to the journal package of Akadémiai Kiadó: 100%
Subscription fee 2021 Online subsscription: 672 EUR / 840 USD
Print + online subscription: 760 EUR / 948 USD
Subscription fee 2022

Online subsscription: 688 EUR / 860 USD
Print + online subscription: 776 EUR / 970 USD

Subscription Information Online subscribers are entitled access to all back issues published by Akadémiai Kiadó for each title for the duration of the subscription, as well as Online First content for the subscribed content.
Purchase per Title Individual articles are sold on the displayed price.

Studia Scientiarum Mathematicarum Hungarica
Language English
French
German
Size B5
Year of
Foundation
1966
Publication
Programme
2021 Volume 58
Volumes
per Year
1
Issues
per Year
4
Founder Magyar Tudományos Akadémia
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 0081-6906 (Print)
ISSN 1588-2896 (Online)