View More View Less
  • 1 The Maharaja Sayajirao University of Baroda, Vadodara — 390 002 (Gujarat), India
  • 2 University of Szeged, Aradi Vértanúk tere 1, Szeged 6720, Hungary
Restricted access

Purchase article

USD  $25.00

1 year subscription (Individual Only)

USD  $800.00

We investigate the pointwise and uniform convergence of the symmetric rectangular partial (also called Dirichlet) integrals of the double Fourier integral of a function that is Lebesgue integrable and of bounded variation over ℝ2. Our theorem is a two-dimensional extension of a theorem of Móricz (see Theorem 3 in [10]) concerning the single Fourier integrals, which is more general than the two-dimensional extension given by Móricz himself (see Theorem 3 in [11]).

  • [1]

    Adams, C. R., and Clarkson, J. A., Properties of functions f(x, y) of bounded variation, Trans. Amer. Math. Soc.,, 36 (1934), 711730.

    • Search Google Scholar
    • Export Citation
  • [2]

    Bary, N. K., A Treatise on Trigonometric Series, New York, Pergamon (1964).

  • [3]

    Clarkson, J. A., and Adams, C. R., On definitions of bounded variation for functions of two variables, Trans. Amer. Math. Soc.,, 35 (4) (1933), 824854.

    • Search Google Scholar
    • Export Citation
  • [4]

    Fréchet, M., Extension au cas des intégrals multiples d’une définition de l’intégrale due a Stieltjes, Nouvelles Annales Math.,, 10 (1910), 241256.

    • Search Google Scholar
    • Export Citation
  • [5]

    Ghodadra, B. L., and Fülöp, V., On the order of magnitude of Fourier transform, Math. Inequal. Appl.,, 18 (3) (2015), 845858.

  • [6]

    Ghorpade, S. R., and Limaye, B. V., A Course in Multivariable Calculus and Analysis, Springer (2009).

  • [7]

    Goldberg, R. R., Fourier Transforms, Cambridge University Press (1961).

  • [8]

    Hardy, G. H., On double Fourier series, Quart. J. Math.,, 371 (1906), 5379.

  • [9]

    Móricz, F., Order of magnitude of double Fourier coefficients of functions of bounded variation, Analysis (Munich),, 22 (4) (2002), 335345.

    • Search Google Scholar
    • Export Citation
  • [10]

    Móricz, F., Pointwise behavior of Fourier integrals of functions of bounded variation over R, J. Math. Anal. Appl.,, 297 (2004), 527539.

    • Search Google Scholar
    • Export Citation
  • [11]

    Móricz, F., Pointwise convergence of double Fourier integrals of functions of bounded variation over R2, J. Math. Anal. Appl.,, 424 (2015), 15301543.

    • Search Google Scholar
    • Export Citation
  • [12]

    Natanson, I. P., Theory of functions of a real variable, Vol. I, New York (1964).

  • [13]

    Stein, E. M., and Weiss, G., Introduction to Fourier Analysis on Euclidean Spaces, Pinceton, New Jersey (1971).

  • [14]

    Titchmarsh, E. C., Introduction to the Theory of Fourier integrals, Clarendon, Oxford (1937).

  • [15]

    Zygmund, A., Trigonometric Series, Vol. 1, Cambridge University Press, UK (1959).