View More View Less
  • 1 The Maharaja Sayajirao University of Baroda, Vadodara — 390 002 (Gujarat), India
  • 2 University of Szeged, Aradi Vértanúk tere 1, Szeged 6720, Hungary
Restricted access

Purchase article

USD  $25.00

1 year subscription (Individual Only)

USD  $800.00

We investigate the pointwise and uniform convergence of the symmetric rectangular partial (also called Dirichlet) integrals of the double Fourier integral of a function that is Lebesgue integrable and of bounded variation over ℝ2. Our theorem is a two-dimensional extension of a theorem of Móricz (see Theorem 3 in [10]) concerning the single Fourier integrals, which is more general than the two-dimensional extension given by Móricz himself (see Theorem 3 in [11]).

  • [1]

    Adams, C. R., and Clarkson, J. A., Properties of functions f(x, y) of bounded variation, Trans. Amer. Math. Soc.,, 36 (1934), 711730.

    • Search Google Scholar
    • Export Citation
  • [2]

    Bary, N. K., A Treatise on Trigonometric Series, New York, Pergamon (1964).

  • [3]

    Clarkson, J. A., and Adams, C. R., On definitions of bounded variation for functions of two variables, Trans. Amer. Math. Soc.,, 35 (4) (1933), 824854.

    • Search Google Scholar
    • Export Citation
  • [4]

    Fréchet, M., Extension au cas des intégrals multiples d’une définition de l’intégrale due a Stieltjes, Nouvelles Annales Math.,, 10 (1910), 241256.

    • Search Google Scholar
    • Export Citation
  • [5]

    Ghodadra, B. L., and Fülöp, V., On the order of magnitude of Fourier transform, Math. Inequal. Appl.,, 18 (3) (2015), 845858.

  • [6]

    Ghorpade, S. R., and Limaye, B. V., A Course in Multivariable Calculus and Analysis, Springer (2009).

  • [7]

    Goldberg, R. R., Fourier Transforms, Cambridge University Press (1961).

  • [8]

    Hardy, G. H., On double Fourier series, Quart. J. Math.,, 371 (1906), 5379.

  • [9]

    Móricz, F., Order of magnitude of double Fourier coefficients of functions of bounded variation, Analysis (Munich),, 22 (4) (2002), 335345.

    • Search Google Scholar
    • Export Citation
  • [10]

    Móricz, F., Pointwise behavior of Fourier integrals of functions of bounded variation over R, J. Math. Anal. Appl.,, 297 (2004), 527539.

    • Search Google Scholar
    • Export Citation
  • [11]

    Móricz, F., Pointwise convergence of double Fourier integrals of functions of bounded variation over R2, J. Math. Anal. Appl.,, 424 (2015), 15301543.

    • Search Google Scholar
    • Export Citation
  • [12]

    Natanson, I. P., Theory of functions of a real variable, Vol. I, New York (1964).

  • [13]

    Stein, E. M., and Weiss, G., Introduction to Fourier Analysis on Euclidean Spaces, Pinceton, New Jersey (1971).

  • [14]

    Titchmarsh, E. C., Introduction to the Theory of Fourier integrals, Clarendon, Oxford (1937).

  • [15]

    Zygmund, A., Trigonometric Series, Vol. 1, Cambridge University Press, UK (1959).

The author instruction is available in PDF.

Please, download the file from HERE

Manuscript submission: HERE

 

  • Impact Factor (2019): 0.486
  • Scimago Journal Rank (2019): 0.234
  • SJR Hirsch-Index (2019): 23
  • SJR Quartile Score (2019): Q3 Mathematics (miscellaneous)
  • Impact Factor (2018): 0.309
  • Scimago Journal Rank (2018): 0.253
  • SJR Hirsch-Index (2018): 21
  • SJR Quartile Score (2018): Q3 Mathematics (miscellaneous)

Language: English, French, German

Founded in 1966
Publication: One volume of four issues annually
Publication Programme: 2020. Vol. 57.
Indexing and Abstracting Services:

  • CompuMath Citation Index
  • Mathematical Reviews
  • Referativnyi Zhurnal/li>
  • Research Alert
  • Science Citation Index Expanded (SciSearch)/li>
  • SCOPUS
  • The ISI Alerting Services

 

Subscribers can access the electronic version of every printed article.

Senior editors

Editor(s)-in-Chief: Pálfy Péter Pál

Managing Editor(s): Sági, Gábor

Editorial Board

  • Biró, András (Number theory)
  • Csáki, Endre (Probability theory and stochastic processes, Statistics)
  • Domokos, Mátyás (Algebra (Ring theory, Invariant theory))
  • Győri, Ervin (Graph and hypergraph theory, Extremal combinatorics, Designs and configurations)
  • O. H. Katona, Gyula (Combinatorics)
  • Márki, László (Algebra (Semigroup theory, Category theory, Ring theory))
  • Némethi, András (Algebraic geometry, Analytic spaces, Analysis on manifolds)
  • Pach, János (Combinatorics, Discrete and computational geometry)
  • Rásonyi, Miklós (Probability theory and stochastic processes, Financial mathematics)
  • Révész, Szilárd Gy. (Analysis (Approximation theory, Potential theory, Harmonic analysis, Functional analysis))
  • Ruzsa, Imre Z. (Number theory)
  • Soukup, Lajos (General topology, Set theory, Model theory, Algebraic logic, Measure and integration)
  • Stipsicz, András (Low dimensional topology and knot theory, Manifolds and cell complexes, Differential topology)
  • Szász, Domokos (Dynamical systems and ergodic theory, Mechanics of particles and systems)
  • Tóth, Géza (Combinatorial geometry)

STUDIA SCIENTIARUM MATHEMATICARUM HUNGARICA
Gábor Sági
Address: P.O. Box 127, H–1364 Budapest, Hungary
Phone: (36 1) 483 8344 ---- Fax: (36 1) 483 8333
E-mail: smh.studia@renyi.mta.hu