View More View Less
  • 1 GC University, Faisalabad, Pakistan
  • 2 Institute of Business Administration, Karachi, Pakistan
  • 3 University of Engineering and Technology, Lahore, Pakistan
Restricted access

Purchase article

USD  $25.00

1 year subscription (Individual Only)

USD  $800.00

In this article we characterize the classification of stably simple curve singularities given by V. I. Arnold, in terms of invariants. On the basis of this characterization we describe an implementation of a classifier for stably simple curve singularities in the computer algebra system SINGULAR.

  • [1]

    Arnold, V. I., Simple singularities of curves (Russia) Tr. Mat. Inst. Steklova, 226 (1999), Mat. Fiz. probl. Kvantovoi Teor. Polya, 27–35; translation in Proc. Steklov Inst. Math.,, 226 (1999), 2028.

    • Search Google Scholar
    • Export Citation
  • [2]

    Bruce, J. W and Gaffney, T. J., Simple Singularities of Mappings C, 0 → C2, 0, J. London Math. Soc. (2), (1982), 465474.

  • [3]

    Decker, W., Greuel, G.-M., Pfister, G. and Schönemann, H., Singular 3- 1-6 — A computer algebra system for polynomial computations. http://www.singular.uni-kl.de (2013).

    • Search Google Scholar
    • Export Citation
  • [4]

    Janjua, F. K and Pfister, G., A classifier for simple space curve singularities, Studia Scientiarum Mathematicarum Hungarica,, 51(1) (2014), 92104.

    • Search Google Scholar
    • Export Citation
  • [5]

    Gibson, C. G and Hobbs, C. A., Simple Singularities of Space Curves, Mathematics. Proc. Camb. Phil. Soc. (1993), 113, 297.

  • [6]

    Greuel, G.-M. and Pfister, G., A Singular Introduction to Commutative Algebra. Second edition, Springer (2007).

  • [7]

    Hefez, A. and Hernandes, M. E., Standard bases for local rings of branches and their modules of differentials, Journal of Symbolic Computation,, 42 (2007), 178191.

    • Search Google Scholar
    • Export Citation
  • [8]

    Hefez, A. and Hernandes, M. E., The Analytic Classification Of Plane Branches, Bulletin of the London Mathematical Society, Volume 43, Number 2, 26 April 26, (2011), pp. 289298 (10).

    • Search Google Scholar
    • Export Citation