View More View Less
  • 1 Cairo University, Giza, Egypt
Restricted access

Purchase article

USD  $25.00

1 year subscription (Individual Only)

USD  $800.00

Let α be an infinite ordinal. Let RCAα denote the variety of representable cylindric algebras of dimension α. Modifying Andréka’s methods of splitting, we show that the variety RQEAα of representable quasi-polyadic equality algebras of dimension α is not axiomatized by a set of universal formulas containing only finitely many variables over the variety RQAα of representable quasi-polyadic algebras of dimension α. This strengthens a seminal result due to Sain and Thompson, answers a question posed by Andréka, and lifts to the transfinite a result of hers proved for finite dimensions > 2. Using the modified method of splitting, we show that all known complexity results on universal axiomatizations of RCAα (proved by Andréka) transfer to universal axiomatizations of RQEAα. From such results it can be inferred that any algebraizable extension of Lω,ω is severely incomplete if we insist on Tarskian square semantics. Ways of circumventing the strong non-negative axiomatizability results hitherto obtained in the first part of the paper, such as guarding semantics, and /or expanding the signature of RQEAω by substitutions indexed by transformations coming from a finitely presented subsemigroup of (ωω, ○) containing all transpositions and replacements, are surveyed, discussed, and elaborated upon.

  • [1]

    Andréka, H., Complexity of equations valid in algebras of relations, Annals of Pure and Applied logic,, 89 (1997), p. 149209.

  • [2]

    Andréka, H., Ferenczi, M. and Németi, I. (Editors), Cylindric-like Algebras and Algebraic Logic, Bolyai Society Mathematical Studies (2013).

    • Search Google Scholar
    • Export Citation
  • [3]

    Andréka, H., Hodkinson, I. and Németi, I., Finite algebras of relations are representable on finite sets, Journal of Symbolic Logic,, 64 (1) (1999), p. 243267.

    • Search Google Scholar
    • Export Citation
  • [4]

    Andréka, H., Németi I. and Sayed Ahmed T., A non-representable quasipolyadic equality algebra with a representable cylindric reduct, Studia Math. Hungarica,, 50(1) (2013), p. 116.

    • Search Google Scholar
    • Export Citation
  • [5]

    Andréka, H. and Thompson R., A Stone type representation theorem for algebras of relations of higher rank, Transactions of the American Mathematical Society,, 309 (1988), p. 671682.

    • Search Google Scholar
    • Export Citation
  • [6]

    Benthem, V., Crs and guarded logic, a fruitful contact. In [2].

  • [7]

    Bulian, J. and Hodkinson, I., Bare canonicity of representable cylindric and polyadic algebras, Annals of Pure and Applied Logic,, 164 (2013), p. 884906.

    • Search Google Scholar
    • Export Citation
  • [8]

    Chang, C. and Keisler, J., Model Theory, Studies in Logic and the Foundation of Mathematics, 7, North Holland 1994.

  • [9]

    Ferenczi, M., The polyadic generalization of the Boolean axiomatization of fields of sets, Trans. of the Amer. Math. Society,, 364(2) (2011), p. 867886.

    • Search Google Scholar
    • Export Citation
  • [10]

    Ferenczi, M., A new representation theory for cylindric-like algebras. In [2], p. 106–135.

  • [11]

    Fremlin, D. H., Consequences of Martin’s axiom, Cambridge University Press, 1984.

  • [12]

    Henkin, L., Monk, J. D. and Tarski, A., Cylindric Algebras Part 1. North Holland, 1970.

  • [13]

    Henkin, L., Monk, J. D. and Tarski, A., Cylindric Algebras Part II. North Holland, 1985.

  • [14]

    Hirsch, R. and Hodkinson, I., Relation Algebras by Games. Studies In Logic. North Holland, 147 (2002).

  • [15]

    Hirsch, R. and Hodkinson, I., Complete representations in algebraic logic, Journal of Symbolic Logic,, 62(3) (1997) p. 816847.

  • [16]

    Hirsch, R. and Hodkinson, I., Completions and complete representations in algebraic logic. In [2].

  • [17]

    Hirsch, R. and Sayed Ahmed, T., The neat embedding problem for algebras other than cylindric algebras and for infinite dimensions, Journal of Symbolic Logic,, 79(1) (2014), p. 208222.

    • Search Google Scholar
    • Export Citation
  • [18]

    Kurucz, A., Representable cylindric algebras and many dimensional modal logics. In [2], pp. 185–204

  • [19]

    Marx, M., Algebraic relativization and arrow logic. Ph.D. thesis, 1995 ILLC dissertation Series.

  • [20]

    Khaled, M. and Sayed Ahmed, T., The Andréka–Resek–Thompson and Ferenczi results using games and more, Pre-print.

  • [21]

    Monk, J. D., Non–finite axiomatizability of classes of representable cylindric algebras, Journal of Symbolic Logic,, 34 (1969), p. 331–343.

    • Search Google Scholar
    • Export Citation
  • [22]

    Sain, I., Searching for a finitizable algebraization of first order logic, Logic Journal of IGPL. Oxford University Press,, 8(4) (2000), 495589.

    • Search Google Scholar
    • Export Citation
  • [23]

    Sain, I. and Gyuris, V., Finite Schematizable Algebraic Logic, Logic Journal of IGPL,, 5 (1997), p. 699–751.

  • [24]

    Sain, I. and Thompson, R. J., Strictly finite Schema Axiomatization of Quasi polyadic algebras. In: ‘Algebraic Logic’ North Holland, Editors Andréka, H., Monk, D., Németi, I., p. 539572.

    • Search Google Scholar
    • Export Citation
  • [25]

    Sági, G., On non-representable G-polyadic algebras with representable cylindric reducts, Logic Journal of IGPL,, 19(1) (2011), p. 105109.

    • Search Google Scholar
    • Export Citation
  • [26]

    Sági, G., Polyadic algebras. In [2].

  • [27]

    Sági, G. and Sziráki, D., Vaught’s conjecture from the perspective of algebraic logic, Logic Journal of IGPL (2012). First published on line January 5, 2012.

    • Search Google Scholar
    • Export Citation
  • [28]

    Sayed Ahmed, T., Amalgamation for reducts of polyadic algebras, Algebra Universalis,, 51 (2004), p. 301359.

  • [29]

    Sayed Ahmed, T., Algebraic Logic, where does it stand today? Bulletin of Symbolic Logic,, 11(4) (2005), p. 465516.

  • [30]

    Sayed Ahmed, T., On finite axiomatizability of expansions of cylindric algebras, Journal of Algebra, Number Theory, Advances and Applications,, 1 (2010), p. 1940.

    • Search Google Scholar
    • Export Citation
  • [31]

    Sayed Ahmed, T., On the complexity of axiomatizations of the class of representable quasi-polyadic equality algebras, Mathematical Logic Quarterly,, 4 (2011), p. 384394.

    • Search Google Scholar
    • Export Citation
  • [32]

    Sayed Ahmed, T., Three interpolation theorems for typeless logics, Logic Journal of IGPL,, 20(6) (2012), p. 10011037.

  • [33]

    Sayed Ahmed, T., Neat reducts and neat embeddings in cylindric algebras. In [2].

  • [34]

    Sayed Ahmed, T., Completions, Complete representations and Omitting types. In [2].

  • [35]

    Sayed Ahmed, T., On notions of representability for cylindric-polyadic algebras and a solution to the finitizability problem for first order logic with equality, Mathematical Logic Quarterly,, 61(6) (2015), p. 418447.

    • Search Google Scholar
    • Export Citation
  • [36]

    Sayed Ahmed, T., Non existence of finite variable universal axiomatizations for representable diagonal free cylindric algebras of dimension>2. Pre-print.

Editors in Chief

Gábor SIMONYI (Rényi Institute of Mathematics)
András STIPSICZ (Rényi Institute of Mathematics)
Géza TÓTH (Rényi Institute of Mathematics) 

Managing Editor

Gábor SÁGI (Rényi Institute of Mathematics)

Editorial Board

  • Imre BÁRÁNY (Rényi Institute of Mathematics)
  • Károly BÖRÖCZKY (Rényi Institute of Mathematics and Central European University)
  • Péter CSIKVÁRI (ELTE, Budapest) 
  • Joshua GREENE (Boston College)
  • Penny HAXELL (University of Waterloo)
  • Andreas HOLMSEN (Korea Advanced Institute of Science and Technology)
  • Ron HOLZMAN (Technion, Haifa)
  • Satoru IWATA (University of Tokyo)
  • Tibor JORDÁN (ELTE, Budapest)
  • Roy MESHULAM (Technion, Haifa)
  • Frédéric MEUNIER (École des Ponts ParisTech)
  • Márton NASZÓDI (ELTE, Budapest)
  • Eran NEVO (Hebrew University of Jerusalem)
  • János PACH (Rényi Institute of Mathematics)
  • Péter Pál PACH (BME, Budapest)
  • Andrew SUK (University of California, San Diego)
  • Zoltán SZABÓ (Princeton University)
  • Martin TANCER (Charles University, Prague)
  • Gábor TARDOS (Rényi Institute of Mathematics)
  • Paul WOLLAN (University of Rome "La Sapienza")

STUDIA SCIENTIARUM MATHEMATICARUM HUNGARICA
Gábor Sági
Address: P.O. Box 127, H–1364 Budapest, Hungary
Phone: (36 1) 483 8344 ---- Fax: (36 1) 483 8333
E-mail: smh.studia@renyi.mta.hu

Indexing and Abstracting Services:

  • CompuMath Citation Index
  • Essential Science Indicators
  • Mathematical Reviews
  • Science Citation Index Expanded (SciSearch)
  • SCOPUS
  • Zentralblatt MATH
2020  
Total Cites 536
WoS
Journal
Impact Factor
0,855
Rank by Mathematics 189/330 (Q3)
Impact Factor  
Impact Factor 0,826
without
Journal Self Cites
5 Year 1,703
Impact Factor
Journal  0,68
Citation Indicator  
Rank by Journal  Mathematics 230/470 (Q2)
Citation Indicator   
Citable 32
Items
Total 32
Articles
Total 0
Reviews
Scimago 24
H-index
Scimago 0,307
Journal Rank
Scimago Mathematics (miscellaneous) Q3
Quartile Score  
Scopus 139/130=1,1
Scite Score  
Scopus General Mathematics 204/378 (Q3)
Scite Score Rank  
Scopus 1,069
SNIP  
Days from  85
sumbission  
to acceptance  
Days from  123
acceptance  
to publication  
Acceptance 16%
Rate

2019  
Total Cites
WoS
463
Impact Factor 0,468
Impact Factor
without
Journal Self Cites
0,468
5 Year
Impact Factor
0,413
Immediacy
Index
0,135
Citable
Items
37
Total
Articles
37
Total
Reviews
0
Cited
Half-Life
21,4
Citing
Half-Life
15,5
Eigenfactor
Score
0,00039
Article Influence
Score
0,196
% Articles
in
Citable Items
100,00
Normalized
Eigenfactor
0,04841
Average
IF
Percentile
13,117
Scimago
H-index
23
Scimago
Journal Rank
0,234
Scopus
Scite Score
76/104=0,7
Scopus
Scite Score Rank
General Mathematics 247/368 (Q3)
Scopus
SNIP
0,671
Acceptance
Rate
14%

 

Studia Scientiarum Mathematicarum Hungarica
Publication Model Hybrid
Submission Fee none
Article Processing Charge 900 EUR/article
Printed Color Illustrations 40 EUR (or 10 000 HUF) + VAT / piece
Regional discounts on country of the funding agency World Bank Lower-middle-income economies: 50%
World Bank Low-income economies: 100%
Further Discounts Editorial Board / Advisory Board members: 50%
Corresponding authors, affiliated to an EISZ member institution subscribing to the journal package of Akadémiai Kiadó: 100%
Subscription fee 2021 Online subsscription: 672 EUR / 840 USD
Print + online subscription: 760 EUR / 948 USD
Subscription fee 2022

Online subsscription: 688 EUR / 860 USD
Print + online subscription: 776 EUR / 970 USD

Subscription Information Online subscribers are entitled access to all back issues published by Akadémiai Kiadó for each title for the duration of the subscription, as well as Online First content for the subscribed content.
Purchase per Title Individual articles are sold on the displayed price.

Studia Scientiarum Mathematicarum Hungarica
Language English
French
German
Size B5
Year of
Foundation
1966
Publication
Programme
2021 Volume 58
Volumes
per Year
1
Issues
per Year
4
Founder Magyar Tudományos Akadémia
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 0081-6906 (Print)
ISSN 1588-2896 (Online)