View More View Less
  • 1 Kirikkale University, Yahsihan, 71450, Kirikkale, Turkey
  • 2 Technical University of Cluj-Napoca, Romania
Restricted access

Purchase article

USD  $25.00

1 year subscription (Individual Only)

USD  $800.00

In this paper, we study the k-th order Kantorovich type modication of Szász—Mirakyan operators. We first establish explicit formulas giving the images of monomials and the moments up to order six. Using this modification, we present a quantitative Voronovskaya theorem for differentiated Szász—Mirakyan operators in weighted spaces. The approximation properties such as rate of convergence and simultaneous approximation by the new constructions are also obtained.

  • [1]

    Acar, T., Asymptotic Formulas for Generalized Szász—Mirakyan Operators, Appl. Math. Comput.,, 263 (2015), 223239.

  • [2]

    Acar, T. and Aral, A., On pointwise convergence of q-Bernstein operators and their q-Derivatives, Num. Funct. Anal. Opt.,, 36(3) (2015), 287304.

    • Search Google Scholar
    • Export Citation
  • [3]

    Acar, T., Quantitative q-Voronovskaya and q-Grüss—Voronovskaya-type results for q-Szász Operators, Georgian Math. J., (In Press).

    • Export Citation
  • [4]

    Acar, T., Aral, A. and Raşa, I., The New Forms of Voronovskaya’s Theorem in weighted spaces, Positivity, (In Press), DOI: 10.1007/s11117-015-0338-4.

  • [5]

    Acar, T. and Ulusoy, G., Approximation By Modified Szász—Durrmeyer Operators, Period. Math. Hungar., (In Press), DOI: 10.1007/s10998-015-0091-2.

  • [6]

    Becker, M., Global approximation theorems for Szász—Mirakjan and Baskakov operators in polynomial weight spaces, Indiana Univ. Math. J.,, 27(1) (1978), 127142.

    • Search Google Scholar
    • Export Citation
  • [7]

    Butzer, P. L. and Karsli, H., Voronovskaya-type theorems for derivatives of the Bernstein-Chlodowsky polynomials and the Szász—Mirakyan operator, Comm. Math.,, 49(1) (2009), 3358.

    • Search Google Scholar
    • Export Citation
  • [8]

    Floater, M., On the convergence of derivatives of Bernstein approximation, J. Approx. Theory,, 134 (2005), 130135.

  • [9]

    Gonska, H. H., Quantitative Korovkin-type theorems on simultaneous approximation, Math. Z.,, 186 (1984), 419433.

  • [10]

    Gonska, H., Heilmann, M. and Raşa, I., Asymptotic behaviour of differentiated Bernstein polynomials revisited, General Mathematics (Sibiu),, 18 (2010), 4553.

    • Search Google Scholar
    • Export Citation
  • [11]

    Gonska, H. and Păltănea, R., General Voronovskaya and asymptotic theorems in simultaneous approximation, Mediterr. J. Math.,, 7 (2010), 3749.

    • Search Google Scholar
    • Export Citation
  • [12]

    Heilmann, M. and Raşa, I., k-th order Kantorovich type modification of the operators Un ω, J. Appl. Funct. Anal., 9(3–4) (2014), 320334.

    • Search Google Scholar
    • Export Citation
  • [13]

    Ispir, N., On Modified Baskakov Operators on Weighted Spaces, Turk. J. Math., 25 (2001), 355365.

  • [14]

    Kacsó, D., Certain Bernstein–Durrmeyer Operators Preserving Linear Functions. Habilitationsschrift, University of Duisburg-Essen, 2008.

    • Search Google Scholar
    • Export Citation
  • [15]

    Knoop, H. B. and Pottinger, P., Ein Satz vom Korovkin-Typ fur Ck-Raume, Math. Z., 148 (1976), 2332.

  • [16]

    Phillips, G. M., Interpolation and Approximation by Polynomials, Springer-Verlag, 2003.

  • [17]

    Sendov, Bl. and Popov, V. (n.d.), Konvergenz von Ableitungen linearer Operatoren, Hand-written German translation of notes used by the authors at the “Seminar on Interpolation and Convexity,” Cluj-Napoca, September 1–10, 1968.

    • Search Google Scholar
    • Export Citation
  • [18]

    Sendov, Bl. and Popov, V., The convergence of the derivatives of positive linear operators, C.R. Acad. Bulgare Sci., 22 (1969), 507509 (in Russian).

    • Search Google Scholar
    • Export Citation
  • [19]

    Sendov, Bl. and Popov, V., Convergence of the derivatives of positive linear operators, B’lgar. Akad. Nauk. Otdel. Mat. Fiz. Nauk. Izv. Mat. Inst., 11 (1970), 107115 (in Bulgarian).

    • Search Google Scholar
    • Export Citation
  • [20]

    Stancu, D. D., Approximation of functions by a new class of linear polynomial operators, Rev. Roumaine Math. Pures Appl., 13 (1968), 11731194.

    • Search Google Scholar
    • Export Citation

The author instruction is available in PDF.

Please, download the file from HERE

Manuscript submission: HERE


  • Impact Factor (2019): 0.486
  • Scimago Journal Rank (2019): 0.234
  • SJR Hirsch-Index (2019): 23
  • SJR Quartile Score (2019): Q3 Mathematics (miscellaneous)
  • Impact Factor (2018): 0.309
  • Scimago Journal Rank (2018): 0.253
  • SJR Hirsch-Index (2018): 21
  • SJR Quartile Score (2018): Q3 Mathematics (miscellaneous)

Language: English, French, German

Founded in 1966
Publication: One volume of four issues annually
Publication Programme: 2020. Vol. 57.
Indexing and Abstracting Services:

  • CompuMath Citation Index
  • Mathematical Reviews
  • Referativnyi Zhurnal/li>
  • Research Alert
  • Science Citation Index Expanded (SciSearch)/li>
  • The ISI Alerting Services


Subscribers can access the electronic version of every printed article.

Senior editors

Editor(s)-in-Chief: Pálfy Péter Pál

Managing Editor(s): Sági, Gábor

Editorial Board

  • Biró, András (Number theory)
  • Csáki, Endre (Probability theory and stochastic processes, Statistics)
  • Domokos, Mátyás (Algebra (Ring theory, Invariant theory))
  • Győri, Ervin (Graph and hypergraph theory, Extremal combinatorics, Designs and configurations)
  • O. H. Katona, Gyula (Combinatorics)
  • Márki, László (Algebra (Semigroup theory, Category theory, Ring theory))
  • Némethi, András (Algebraic geometry, Analytic spaces, Analysis on manifolds)
  • Pach, János (Combinatorics, Discrete and computational geometry)
  • Rásonyi, Miklós (Probability theory and stochastic processes, Financial mathematics)
  • Révész, Szilárd Gy. (Analysis (Approximation theory, Potential theory, Harmonic analysis, Functional analysis))
  • Ruzsa, Imre Z. (Number theory)
  • Soukup, Lajos (General topology, Set theory, Model theory, Algebraic logic, Measure and integration)
  • Stipsicz, András (Low dimensional topology and knot theory, Manifolds and cell complexes, Differential topology)
  • Szász, Domokos (Dynamical systems and ergodic theory, Mechanics of particles and systems)
  • Tóth, Géza (Combinatorial geometry)

Gábor Sági
Address: P.O. Box 127, H–1364 Budapest, Hungary
Phone: (36 1) 483 8344 ---- Fax: (36 1) 483 8333