View More View Less
  • 1 Aletheia University, Tamsui, New Taipei City 25103, Taiwan
Restricted access

Purchase article

USD  $25.00

1 year subscription (Individual Only)

USD  $800.00

In this paper, we shall establish some Hadamard-type inequalities for differentiable coordinated convex functions in a rectangle from the plane in two variables. Through these inequalities, more precise estimates could be obtained. Some examples and applications to cubature formulas are also provided.

  • [1]

    Dragomir, S. S., On the Hadamard’s inequality for convex on the co-ordinates in a rectangle from the plane, Taiwanese J. Math.,, 5(4) (2001), 775788.

    • Search Google Scholar
    • Export Citation
  • [2]

    Dragomir, S. S. and Pearce, C. E. M., Selected Topics on Hermite–Hadamard Inequalities and Applications. RGMIA Monographs, Victoria University (2000). Online: http://www.staff.vu.edu.au/RGMIA/monographs/hermite hadamard.html

    • Export Citation
  • [3]

    Hadamard, J., Étude sur les propriétés des fonctions entières en particulier d’une fonction considérée par Riemann, J. Math. Pures Appl., 58 (1893), 171215.

    • Search Google Scholar
    • Export Citation
  • [4]

    Hsu, K.-C., Refinements of Hermite–Hadamard Type Inequalities for Differentiable Co-ordinated Convex Functions and Applications, Taiwanese J. Math., 19(1) (2015), 33157.

    • Search Google Scholar
    • Export Citation
  • [5]

    Hsu, K.-C., Some Hermite–Hadamard Type Inequalities for Differentiable Coordinated Convex Functions and Applications, Advances in Pure Math.,, 4(7) (2014), doi:10.4236/apm.2014.47044.

    • Search Google Scholar
    • Export Citation
  • [6]

    Hwang, D.-Y., Hsu, K.-C. and Tseng, K.-L., Hadamard-type inequalities for Lipschitzian functions in one and two variables with applications, J. Math. Anal. Appl.,, 405 (2013), 546554.

    • Search Google Scholar
    • Export Citation
  • [7]

    Latif, M. A. and Alomari, M., Hadamard-type inequalities for product two convex functions on the co-ordinetes, Int. Math. Forum,, 4(47) (2009), 23272338.

    • Search Google Scholar
    • Export Citation
  • [8]

    Latif, M. A. and Dragomir, S. S., On some new inequalities for differentiable co-ordinated convex functions, J. of Inequal. and Appl., (2012), 2012:28, doi:10.1186/1029-242X-2012-28.

    • Search Google Scholar
    • Export Citation
  • [9]

    Sarikaya, M. Z., Set, Erhan, Ozdemir, M. E. and Dragomir, S. S., New some Hadamard’s type inequalities for co-ordinated convex functions, (2010), arXiv:1005.0700v1 [math.CA].

    • Search Google Scholar
    • Export Citation
  • [10]

    Tseng, K.-L., Yang, G.-S. and Hsu, K.-C., On some inequalities of Hadamard’s type and applications, Taiwanese J. Math.,, 13(6B) (2009), 19291948.

    • Search Google Scholar
    • Export Citation
  • [11]

    Yang, G.-S. and Tseng, K.-L., On certain integral inequalities related to Hermite–Hadamard inequalities, J. Math. Anal. Appl.,, 239 (1999), 180187.

    • Search Google Scholar
    • Export Citation