View More View Less
  • 1 Aletheia University, Tamsui, New Taipei City 25103, Taiwan
Restricted access

Purchase article

USD  $25.00

1 year subscription (Individual Only)

USD  $800.00

In this paper, we shall establish some Hadamard-type inequalities for differentiable coordinated convex functions in a rectangle from the plane in two variables. Through these inequalities, more precise estimates could be obtained. Some examples and applications to cubature formulas are also provided.

  • [1]

    Dragomir, S. S., On the Hadamard’s inequality for convex on the co-ordinates in a rectangle from the plane, Taiwanese J. Math.,, 5(4) (2001), 775788.

    • Search Google Scholar
    • Export Citation
  • [2]

    Dragomir, S. S. and Pearce, C. E. M., Selected Topics on Hermite–Hadamard Inequalities and Applications. RGMIA Monographs, Victoria University (2000). Online: http://www.staff.vu.edu.au/RGMIA/monographs/hermite hadamard.html

    • Export Citation
  • [3]

    Hadamard, J., Étude sur les propriétés des fonctions entières en particulier d’une fonction considérée par Riemann, J. Math. Pures Appl., 58 (1893), 171215.

    • Search Google Scholar
    • Export Citation
  • [4]

    Hsu, K.-C., Refinements of Hermite–Hadamard Type Inequalities for Differentiable Co-ordinated Convex Functions and Applications, Taiwanese J. Math., 19(1) (2015), 33157.

    • Search Google Scholar
    • Export Citation
  • [5]

    Hsu, K.-C., Some Hermite–Hadamard Type Inequalities for Differentiable Coordinated Convex Functions and Applications, Advances in Pure Math.,, 4(7) (2014), doi:10.4236/apm.2014.47044.

    • Search Google Scholar
    • Export Citation
  • [6]

    Hwang, D.-Y., Hsu, K.-C. and Tseng, K.-L., Hadamard-type inequalities for Lipschitzian functions in one and two variables with applications, J. Math. Anal. Appl.,, 405 (2013), 546554.

    • Search Google Scholar
    • Export Citation
  • [7]

    Latif, M. A. and Alomari, M., Hadamard-type inequalities for product two convex functions on the co-ordinetes, Int. Math. Forum,, 4(47) (2009), 23272338.

    • Search Google Scholar
    • Export Citation
  • [8]

    Latif, M. A. and Dragomir, S. S., On some new inequalities for differentiable co-ordinated convex functions, J. of Inequal. and Appl., (2012), 2012:28, doi:10.1186/1029-242X-2012-28.

    • Search Google Scholar
    • Export Citation
  • [9]

    Sarikaya, M. Z., Set, Erhan, Ozdemir, M. E. and Dragomir, S. S., New some Hadamard’s type inequalities for co-ordinated convex functions, (2010), arXiv:1005.0700v1 [math.CA].

    • Search Google Scholar
    • Export Citation
  • [10]

    Tseng, K.-L., Yang, G.-S. and Hsu, K.-C., On some inequalities of Hadamard’s type and applications, Taiwanese J. Math.,, 13(6B) (2009), 19291948.

    • Search Google Scholar
    • Export Citation
  • [11]

    Yang, G.-S. and Tseng, K.-L., On certain integral inequalities related to Hermite–Hadamard inequalities, J. Math. Anal. Appl.,, 239 (1999), 180187.

    • Search Google Scholar
    • Export Citation

The author instruction is available in PDF.

Please, download the file from HERE

Manuscript submission: HERE

 

  • Impact Factor (2019): 0.486
  • Scimago Journal Rank (2019): 0.234
  • SJR Hirsch-Index (2019): 23
  • SJR Quartile Score (2019): Q3 Mathematics (miscellaneous)
  • Impact Factor (2018): 0.309
  • Scimago Journal Rank (2018): 0.253
  • SJR Hirsch-Index (2018): 21
  • SJR Quartile Score (2018): Q3 Mathematics (miscellaneous)

Language: English, French, German

Founded in 1966
Publication: One volume of four issues annually
Publication Programme: 2020. Vol. 57.
Indexing and Abstracting Services:

  • CompuMath Citation Index
  • Mathematical Reviews
  • Referativnyi Zhurnal/li>
  • Research Alert
  • Science Citation Index Expanded (SciSearch)/li>
  • SCOPUS
  • The ISI Alerting Services

 

Subscribers can access the electronic version of every printed article.

Senior editors

Editor(s)-in-Chief: Pálfy Péter Pál

Managing Editor(s): Sági, Gábor

Editorial Board

  • Biró, András (Number theory)
  • Csáki, Endre (Probability theory and stochastic processes, Statistics)
  • Domokos, Mátyás (Algebra (Ring theory, Invariant theory))
  • Győri, Ervin (Graph and hypergraph theory, Extremal combinatorics, Designs and configurations)
  • O. H. Katona, Gyula (Combinatorics)
  • Márki, László (Algebra (Semigroup theory, Category theory, Ring theory))
  • Némethi, András (Algebraic geometry, Analytic spaces, Analysis on manifolds)
  • Pach, János (Combinatorics, Discrete and computational geometry)
  • Rásonyi, Miklós (Probability theory and stochastic processes, Financial mathematics)
  • Révész, Szilárd Gy. (Analysis (Approximation theory, Potential theory, Harmonic analysis, Functional analysis))
  • Ruzsa, Imre Z. (Number theory)
  • Soukup, Lajos (General topology, Set theory, Model theory, Algebraic logic, Measure and integration)
  • Stipsicz, András (Low dimensional topology and knot theory, Manifolds and cell complexes, Differential topology)
  • Szász, Domokos (Dynamical systems and ergodic theory, Mechanics of particles and systems)
  • Tóth, Géza (Combinatorial geometry)

STUDIA SCIENTIARUM MATHEMATICARUM HUNGARICA
Gábor Sági
Address: P.O. Box 127, H–1364 Budapest, Hungary
Phone: (36 1) 483 8344 ---- Fax: (36 1) 483 8333
E-mail: smh.studia@renyi.mta.hu