A subgroup H of G is called Mp-embedded in G, if there exists a p-nilpotent subgroup B of G such that Hp ∈ Sylp(B) and B is Mp-supplemented in G. In this paper, we use Mp-embedded subgroups to study the structure of finite groups.
Asaad, M. and Heliel, A. A., On S-quasinormality embedded subgroups of finite groups, J. Pure Appl. Algebra, 165 (2001), 129–135.
Ballester-Bolinches, A. and Pedraza Aguilera, M. C., Sufficient conditions for supersolubility of finite groups, J. Pure Appl. Algebra, 127 (1998), 113–223.
Doerk, K. and Hawkes, T., Finite Soluble Groups, de Gruyter, Berlin/New York, 1992.
Huppert, B. and Blackburn, N., Finite Groups III, Springer-Verlag, Berlin-New York, 1982.
Guo, W., The Theory of Classes of Groups, Science Press-Kluwer Academic Publishers, Beijing–New York–Dordrecht–Boston–London, 2000.
Guo, W., On F-supplemented subgroups of finite groups, Manuscripta Math., 127 (2008), 139–150.
Guo, W. and Skiba, A. N., On FΦ*-hypercentre of finite groups, J. Algebra, 372 (2012), 275–292.
Miao, L. and Lempken, W., On M-supplemented subgroups of finite groups, J. Group Theory, 12 (2009), 271–289.
Miao, L., On p-nilpotency of finite groups, Bull. Braz. Math. Soc., 38(4) (2007), 585–594.
Shemetkov, L. A. and Skiba, A. N., On the XF-hypercentre of finite groups, J. Algebra, 322 (2009), 2106–2117.
Monakhov, V. S. and Shnyparkov, A. V., On the p-supersolubility of a finite group with a M-supplemented Sylow p-subgroup, Siberian Math. J., 50(4) (2009), 681–686.
Skiba, A. N., On weakly s-permutable subgroups of finite groups, J. Algebra, 315 (2007), 192–209.
Wang, Y. , Wei, H. and Li, Y., A generalization of Kramer’s theorem and its applications, Bull. Austral. Math. Soc., 65 (2002), 467–475.